PCBoard Programming Language

Reference Guide

(Extracted from Power PPL 2.0 HLP File)

Thanks to By Francis Gastellu, developer os Power PPL, that included the entire reference in Power PPL HLP

PPL Reference Index

Compiler Options

There are two options for the compiler :
1 - Array Dimension Checking:

This option allow the compiler to check for mistakes when using the statement
REDIM. for example :

DIM TABLE(5,5,5)
I.:i.EDIM TABLE,10,10
This will generate an error unless Array Dimension Checking has been disabled.
2 - User Variable Generation
This allow the PPE to generate the user variables when starting... disable this option if

you don't want to have the work done... Usually, there is no need to change anything
here... both options may be checked unless you have reasons to changed that.

ASCII1 Table

The ASClicode www.theasciicode.com.ar

ASCII control characters ASCII printable characters Extended ASCII characters
DEC HEX Simbolo ASCII DEC HEX Simbolo DEC HEX Simbolo DEC HEX Simbolo DEC HEX Simbolo DEC HEX Simbolo DEC HEX Simbolo DEC HEX Simbolo

0o HULL {caracter nulo) 32 espacio | 64 @ 96 . 128 G 160 a 192 L 224 O
0 SOH (inicio encabezado) 33 ! 65 Jit a7 a 129 i 161 i 193 L 225 i
02 STX (inicin texto) 34 " 66 B 98 b 130 e 162 o] 194 226 O
03 ETX (fin de texto) 35 # 67 C 99 C 131] 163 u 195 -|: 227 O
04 EOT {fin transmisién} 36 $ 68 D 100 d 132 a 164 fi 196 - 228 o
05 ENGQ {Enguiry} ir % 69 E 101 2] 133 a 165 i 197 -|- 229 O
06 ACK (acknowledgement) 38 & 70 F 102 f 134 a 166 8 198 a 230 p
irg BEL (timbre) 39 ' 71 G 103 g 135 ¢ 167 e 199 A 231 b
08 BS (retroceso) 40 (T2 H 104 h 136 8 168 é 200 L 232 b
0a HT {tab horizontal) 4) 73 | 105 i 137 2] 169 ® 201 JE 233 u
10 LF (zalto de linea) 42 * T4 J 106 i 138 1] 170 - 202 = 234 u
1 VT (tab vertical) 43 + 75 K 107 k 139 0 171 e 203 = 235 U
12 FF (form feed) 44 . 76 L 108 | 140 i 172 A 204 -H; 236 y
13 CR (retorno de carro) 45 - 7 M 109 m 141 i 173 i 205 = 237 Y
14 50 (=hift Qut) 46 . it M 110 n 142 A 174 « 206 J”': 238 -
15 5l (=hift In} 47 I 79 o 111 0 143 A 175 » 207 o 239

16 DLE (data link escape) 48] a0 P 112 p 144 E 176 208 3 240

17 DC1 (device control 1) 49 1 81 Q 113 q 145 & 177 = 209 E} 241 +
18 DC2 (device control 2) 50 2 a2 R 114 r 146 Fisl 178 210 E 242 _
19 DC3 (device control 3) | 3 83 S 115 5 147 i} 179 211 E 243 24
20 DC4 (device control 4) 52 4 84 T 116 t 148 0 180 212 E 244 1
21 NAK (negative acknowle.) 83 5 85 U 117 u 149 o 181 j.l 213 1 245 §
22 SYN (synchronous idle} 54 b 86 A" 118 v 150 1] 182 A 214 | 246 +
23 ETB (end of trans. block) 55 7 87 W 119 w 151 i 183 A 215 i 247 .
24 CAN (cancel) 56 8 88 X 120 X 152 i 184 @ 216 i 248 @
25 EM {end of medium) &7 9 29 Y 121 y 153 O 185 d 217 4 249 "
26 sSuB (=ubstitute} 58 : a0 i 122 z 154 u 186 -‘ 218 250 .
27 ESC (e=cape) 59 : 91 [123 { 155 B 187] 219 i 251 !
28 FS (file =eparator) 60 < 92 1 124 | 156 £ 188 220 - 252 #
29 GS (group separator) 1 = 93 | 125 } 157 @ 189 ¢ 221 1 253 2
30 RS (record separator) 62 = a4 A 126 ~ 158 x 1490 ¥ 222 | 254 n
KX Us (unit separator) 63 ? a5 _ 159 f 191 1 223 u 255

127 DEL (delete) theASCllcode. com.ar

PCBoard Programming Language Reference Index

PPL Source Syntax
Data Types
Constants

Predifined Variables
Predifined Constants
Message Header Constants
Expression Operators
Accounting features
DBase Il features
@Xnn Color codes
Compiler Options
Compiler Directives

—— Functions & Statements ——

Functions & Statements — A
Functions & Statements - B

Functions & Statements — C
Functions & Statements - D
Functions & Statements — E
Functions & Statements — F
Functions & Statements — G
Functions & Statements - H
Functions & Statements - |

Functions & Statements - J

Functions & Statements - K
Functions & Statements - L

Functions & Statements - M
Functions & Statements - N
Functions & Statements - O
Functions & Statements - P

Functions & Statements - Q
Functions & Statements - R
Functions & Statements - S
Functions & Statements - T

Functions & Statements - U
Functions & Statements - V
Functions & Statements - W
Functions & Statements - X
Functions & Statements - Y

Functions & Statements - A

Abort

Abs
Account
ActMsgNum
AdjBytes
AdjDBytes
AdjTBytes
AdjTFiles
AdjTime
Alias

And
AnsiOn
AnsiPos
Append
Asc

Function & Statements - B
B2w
Backup
BitClear
BitSet
Blt
Break
Broadcast
Bye

Function & Statements - C
Call
Calllb
CallNum
Carrier
CcType
CdCheckOff
CdCheckOn
CdOn
Chat
ChatStat
Chr
CloseCap
ClrEol
Cls
Color
ConfAlias
ConfExp
ConfFlag
ConfMw
ConfReg
ConfSel
ConfSys
ConfUnFlag

Continue
Copy
Crc32
CurColor
CurConf
CurSec
CurUser

Function & Statements - D
Date
Day
DbgLevel
Dec
Declare
DefAns
DefColor
Delay
Delete
DelUser
Dir
DispFile
DispStr
DispText
DNext
Dolntr
Dow
Download
DriveSpace
DtrOff
DtrOn

Function & Statements - E
End
ErrorCorrect
EvtTimeAdj
Exist

Function & Statements - F
FAppend
FClose
FCloseAll
FCreate
FDefln
FDefOut
FDGet
FDPut
FDPutLn
FDPutPad
FDRead
FDWrite
Ferr
FFlush

FGet
FileInf
Flag
FlagCnt
FmtCC
FmtReal
FNext
FOpen
ForNext
Forward
FPut
FPutLn
FPutPad
FRead
FReAltUser
FreshLine
FRewind
FSeek
Function
FWrite

Function & Statements - G
GetAltUser
GetEnv
GetToken
GetUser
GetX
GetY
Go
Goodbye
GoSub
GoTo
GrafMode

Function & Statements - H
Hangup
HelpPath
HiConfNum
HiMsgNum
Hour

Function & Statements - |
12s
IfThen
InBytes
Inc
Inkey
Input
InputCC
InputDate
Inputint
InputMoney

InputStr
InputText
InputTime
InputYN
Instr
IsBitSet
IsNonStop

Function & Statements - J
Join

Function & Statements - K
KbdBufSize
KbdChkOff
KbdChkOn
KbdFile
KbdFileUsed
KbdFlush
KbdString
KbdStuff
KeyFlush
Kinkey

Function & Statements - L
Lang
LangExt
LastAns
Lastin
Left
Len
Let
Log
LoggedOn
LoMsgNum
Loop
Lower
Lprinted
Ltrim

Function & Statements - M
Mask _Alnum
Mask_Alpha
Mask__Ascii
Mask_File
Mask_ Num
Mask_Path
Mask_ Pwd
MaxNode
MdmFlush
MegaNum
Message
MGetByte

Mid

Min
Mlinkey
MinLeft
MinOn
Mixed
MKAddr
MkDate
Modem
Month
More
MouseReg
MPrint
MPrintLn
MsgToFile

Function & Statements - N
NewLine
NewLines
NoChar
Not

Function & Statements - O
OnLocal
OpenCap
Operators
OpText
Or
OutBytes

Function & Statements - P
PageOff
PageOn
PageStat
PCBAccount
PcbAccStat
PcbDat
PcbMac
PcbNode
PeekB
PeekDW
PeekW
PokeB
PokeDW
PokeW
Pop
PPEName
PPEPath
PPLBufSize
PRFound
Print
PrintLn

Procedure
PromptStr
Psa

Push
PutAltUser
PutUser

Function & Statements - Q
Quest
Quit
QwkLimits

Function & Statements - R
Random
RdUnet
RdUsys
ReadLine
RecordUsage
ReDim
RegAh
RegAl
RegAx
RegBh
RegBlI
RegBx
RegCf
RegCh
RegCl
RegCx
RegDh
RegDi
RegDl
RegDs
RegDx
RegEs
RegF
RegSi
Rename
Replace
ReplaceStr
ResetDisp
RestScrn
Return
Right
Rtrim

Function & Statements - S
S2i
SaveScrn
ScanMsgHdr
ScrFile
ScrText

SearchFind
Searchlinit
SearchStop
Sec

Select Case
SendModem
SetEnv
SetLmr
Shell
ShowOff
ShowOn
ShowsStat
SlPath

Sort

Sound
Space
SPrint
SPrintLn
StackAbort
StackErr
StackLeft
StartDisp
Stop

String

Strip
StripAtx
StripStr
Syntax
SysopSec

Function & Statements - T
TempPath
Time
TimeAP
To
ToDDate
TokCount
Tokenize
TokenStr
ToType
TPACGet
TPACPut
TPACRead
TPACWrite
TPAGet
TPAPut
TPARead
TPAWTrite
Trim

Function & Statements - U
Un_City

Un_Name
Un_Oper
Un_Stat
Upper
UserAlias
U_Bdl
U_BdIDay
U_Bul
U_Fdl
U_Ful
U_InConf
U LDate
U_LDir

U Lmr
U_Logons
U LTime
U_MsgRd
U_MsgWr
U_Name
U_PwdHist
U_PwdLc
U PwdTc
U_RecNum
U_Stat
U_TimeOn

Function & Statements - V
ValCC
ValDate
ValTime
VarAddr
VarOff
VarSeg
Ver

Function & Statements - W
Wait
WaitFor
While
WrUnet
WrUsys
WrUsysDoor

Function & Statements - X
Xor

Function & Statements - Y
Year
YesChar

PPL SOURCE SYNTAX

Each line of a PPL source file may contain none, one, some or all of the following
sections:

[KEYWORD][EXPR|VAR][,EXPR|VAR][;|"'][COMMENT TEXT]

KEYWORD - A PPL statement used to accomplish some task.

EXPR - A PPL expression which may contain VARs, CONSTs, and/or FUNCs.
VAR - A PPL variable with optional array subscript.
CONST - A PPL constant.

FUNC - A PPL function that returns a value.

; - Used to start a comment. Ignored by the compiler.

' - Used to start a comment. Ignored by the compiler.

* - Used to start a comment if first character of the line.
COMMENT - Comment text following the ; or ‘. Ignored by the compiler.

If a line is blank or contains only a comment, it is skipped. if it contains a KEYWORD,
that line is compiled into a tokenized format. If it doesn't contain a KEYWORD but
some argument, it is assumed to be an assignement statement (LET).

A double quote (") may be embedded within a string constant to tell the compiler
that a single literal quote is desired In other words, "THIS™IS"™A""TEST" would
evaluate to THIS"IS"A"TEST after the leading and trailing quotes are removed and the
double quotes were folded to single quotes.

Labels and variable names may now include the following characters in addition to A-
Z, 0-9, and the _ (underscore) character: $ (dollar sign), @ (commercial at), #
(pound sign), ¢ (cents), £ (british pound), ¥ (japanese yen)

A\ (backslash) character as the last character on a line (before any comments) will
now allow continuing a logical line from one to the next physical line

A : (colon) character may be used to separate multiple logical lines on a single
physical line

DATA TYPES

SYNTAX
TYPE var[(dim[,dim[,dim]]D][,var...]
PPL utilizes the following data types:
BOOLEAN
unsigned character (1 byte) O = FALSE, non-0 = TRUE
DATE
unsigned integer (2 bytes) PCBoard julian date (count of days since 1/1/1900)

DDATE

Signed long integer for julian date. DDATE is for use with DBase date fields. It holds a
long integer for julian dates. When coerced to string type it is in the format
CCYYMMDD or 19940527

INTEGER / SDWORD / LONG
signed long integer (4 bytes) Range: -2,147,483,648 -> +2,147,483,647

MONEY
signed long integer (4 bytes) Range: -$21,474,836.48 -> +%$21,474,836.47

STRING

far character pointer (4 bytes) NULL is an empty string non-NULL points to a string of
some length less than or equal to 256

TIME
signed long integer (4 bytes) Count of seconds since midnight

BIGSTR
Allows up to 2048 characters per big string (up from 256 for STRING variables) May
include CHR(O) characters in the middle of the big string (unlike STRING variables
which may not)

EDATE

Julian date in earth date format Deals with dates formatted YYMM.DD Range: Same
as DATE

REAL / FLOAT

4-byte floating point number Range: +/-3.4E-38 - +/-3.4E+38 (7-digit precision)
DREAL / DOUBLE

8-byte floating point number Range: +/-1.7E-308 - +/-1.7E+308 (15-digit precision)
UNSIGNED / DWORD / UDWORD

4-byte unsigned integer Range: 0 - 4,294,967,295
BYTE / UBYTE

1-byte unsigned integer Range: 0 - 255
WORD / UWORD

2-byte unsigned integer Range: 0 - 65,535

SBYTE / SHORT

1-byte signed integer Range: -128 - 127
SWORD / INT

2-byte signed integer Range: -32,768 - 32,767

NOTES

Any type may be assigned to any other type. This is the simplest way to accomplish
type conversion. BOOLEAN, DATE, INTEGER, MONEY and TIME are all integer types
and may be assigned to each other. Assignment from a larger data type to a smaller
data type automatically converts the data to a format suitable for the smaller data
type. Conversion to and from STRINGs is dependent on the other data type. DATEs
are imported/exported as "MM-DD-YY". TIMEs are imported/exported as "HH:MM:SS".
MONEYs are imported/exported as "#.##" without embedded dollar signs or commas,
and using as many characters as needed to the left of the decimal point. All variables
must be declared before use.

CONSTANTS

PPL allows user defined constants in the following formats:
$# . HH

A MONEY constant (dollar sign followed by optional dollars followed by decimal point
followed by cents; # = 0-9)
i

#h

An INTEGER hexadecimal constant (# = 0-9 & A-F)
i
#d

An INTEGER decimal constant (# = 0-9)
i
#o0

An INTEGER octal constant (# = 0-7)
i
#b

An INTEGER binary constant (# = 0-1)
i
H

An INTEGER constant (# = 0-9)
HiE
NG

A STRING constant (X = any displayable text)
i

@X#HH
An INTEGER @X constant (# = 0-9 & A-F)

PREDEFINED CONSTANTS

PPL predefines the following constants:
AUTO = 2000h

Parameter passed to INPUTSTR and PROMPTSTR statements (automatically press
enter after 10 seconds of no user input)

BELL = 800h
Parameter passed to DISPTEXT statement (sound a bell when prompt displayed)
N

CRC_FILE - CRC_STR
These constants were added to avoid confusion when telling the function CRC32 what
it is taking the CRC of. CRC_FILE tells CRC32 to calculate the CRC of the file
contained within the string argument. CRC_STR tells CRC32 to calculate the CRC of
the string argument itself. CRC_FILE has a value of 1 (TRUE) CRC_STR has a value of
0 (FALSE)

CUR_USER =0
Parameter passed to CURUSER()

DEFS =0
Parameter passed to various statements for default values

ECHODOTS = 1h

Parameter passed to INPUTSTR and PROMPTSTR statements (echo dots instead of
user input)

ERASELINE = 20h

Parameter passed to INPUTSTR and PROMPTSTR statements (erase the current line
when user presses enter)

FALSE = O
BOOLEAN FALSE value
FCL =2

Value passed to STARTDISP to force line counting display

FIELDLEN = 2h

Parameter passed to INPUTSTR and PROMPTSTR statements (displays parenthesis to
show input field width if ANSI enabled) OO

FNS =1
Value passed to STARTDISP to force non-stop display
F EXP = 2h
Expired subscription access allowed flag for CONFFLAG and CONFUNFLAG
F_ MW = 10h
Mail waiting flag for CONFFLAG and CONFUNFLAG
F_REG = 1h
Registered access allowed flag for CONFFLAG and CONFUNFLAG
F_SEL = 4h
Conference selected flag for CONFFLAG and CONFUNFLAG
F_SYS = 8h
Conference SysOp access flag for CONFFLAG and CONFUNFLAG
GRAPH = 1h
Parameter passed to DISPFILE statement to search for graphics specific files
GUIDE = 4h

Parameter passed to INPUTSTR and PROMPTSTR statements (displays parenthesis
above current line if FIELDLEN used and ANSI not enabled) OO

HIGHASCII = 1000h

Parameter passed to INPUTSTR and PROMPTSTR statements (allow high ascii
characters, regardless of current valid character set, if disable high ascii filter set to

yes)
LANG = 4h
Parameter passed to DISPFILE statement to search for language specific files

LFAFTER = 100h

Parameter passed to INPUTSTR, PROMPTSTR and DISPTEXT statements (send an
extra line feed after user presses enter)

LFBEFORE = 80h

Parameter passed to INPUTSTR, PROMPTSTR and DISPTEXT statements (send an
extra line feed before prompt display)

LOGIT = 8000h
Parameter passed to DISPTEXT statement (log text to callers log)
LOGITLEFT = 10000h

Parameter passed to DISPTEXT statement (log text to callers log, forcing left
justification)

NC =0
Value passed to STARTDISP to not change display mode
NEWLINE = 40h

Parameter passed to INPUTSTR, PROMPTSTR and DISPTEXT statements (send a line
feed after user presses enter)

NOCLEAR = 400h

Parameter passed to INPUTSTR and PROMPTSTR statements (don't clear field at first
keypress regardless of ANSI)

NO_USER = -1

Parameter passed to CURUSER()
O RD=0

Parameter passed to FCREATE/FOPEN/FAPPEND to open a file in read only mode
O RW =2

Parameter passed to FCREATE/FOPEN/FAPPEND to open a file in read and write mode
O WR=1

Parameter passed to FCREATE/FOPEN/FAPPEND to open a file in write only mode
SEC = 2h

Parameter passed to DISPFILE statement to search for security specific files

STACKED = 10h

Parameter passed to INPUTSTR and PROMPTSTR statements (allow semi-colons and
spaces in addition to valid character set passed)

S DB = 3h

Parameter passed to FCREATE/FOPEN/FAPPEND to deny read and write (both) access
from other processes

S DN = 0h

Parameter passed to FCREATE/FOPEN/FAPPEND to allow read and write (deny none)
access from other processes

S DR = 1h

Parameter passed to FCREATE/FOPEN/FAPPEND to deny read access from other
processes

S _DW = 2h

Parameter passed to FCREATE/FOPEN/FAPPEND to deny write access from other
processes

TRUE =1
BOOLEAN TRUE value
UPCASE = 8h

Parameter passed to INPUTSTR and PROMPTSTR statements (force user input to
upper case)

WORDWRAP = 200h

Parameter passed to INPUTSTR and PROMPTSTR statements (if user hits end of line,
save the text at the end of the line for future use)

YESNO = 4000h

Parameter passed to INPUTSTR and PROMPTSTR statements (Only allow international
yes/no responses)

NO_USER = -1
Return by GetUser - variables are currently undefined
CUR_USER =0

Return by GetUser - User variables are for the current user
See also : Predefined Variables

PREDEFINED VARIABLES

PPL predefines the following variables for user record access:
BOOLEAN U_CLS

Clear screen between messages status
BOOLEAN U_DEF79

79 column message editor default
BOOLEAN U_EXPERT

Users current expert status

BOOLEAN U_FSE

Users full screen editor default
BOOLEAN U_FSEP

Prompt for full screen editor status
BOOLEAN U_LONGHDR

6 line vs 4 line message header status
BOOLEAN U_SCROLL

Scroll multi-screen message status
DATE U_EXPDATE

The users subscription expiration date
DATE U_PWDEXP

The date that the users password expires and must be changed
INTEGER U_EXPSEC

The users expired security level
INTEGER U_PAGELEN

The users page length

INTEGER U_SEC

The users security level

STK_LIMIT

This constant was added so the PPL programmer could determine how close they are
getting to the stack limit when using recursion.

STRING U_ADDR(5)
The users address information (if the SysOp has enabled address recording)

Subscript O = First street line
1 = Second street line

2 = City

3 = State

4 =7Zip

5 = Country

STRING U_ALIAS

The users alias (if the SysOp has enabled alias use)
STRING U_BDPHONE

The users business/data phone number
STRING U_CITY

The users city/state information
STRING U_CMNT1

The users comment field

STRING U_CMNT2

The SysOps comment field

STRING U_HVPHONE

The users home/voice phone number
STRING U_NOTES(4)

Notes about the user (if the SysOp has enabled the note capability)
Subscripts 0-4 hold lines 1-5

STRING U_PWD
The users password
STRING U_TRANS

The users default transfer protocol

STRING U_VER

The users verification string (if the SysOp has enabled user verification)
See also : Predefined Constants
o

EXPRESSION OPERATORS
|

PPL allows the following operators to be used in expressions (lvalue and rvalue are
simply the values to the left and right, respectively, of binary operators):

(- Start sub-expression (also allows [to be used)

) - End sub-expression (also allows] to be used)

~n - Raise Ivalue to the power of rvalue (also allows ** to be used)
* - Multiply Ivalue by rvalue

/ - Divide lvalue by rvalue

% - Remainder of lvalue divided by rvalue

+ - Add rvalue to Ivalue

- - Subtract rvalue from lvalue

= - Is Ivalue equal to rvalue (also allows ==

<> - Is lvalue not equal to rvalue (also allows !'= and ><)

< - Is Ivalue less than rvalue

<= - Is Ivalue less than or equal to rvalue (also allows =<)

> - Is Ivalue greater than rvalue

>= - Is lvalue greater than or equal to rvalue (also allows =>)

! Logical not of rvalue

& - Logical and of Ivalue with rvalue (also allows &&)
| - Logical or of lvalue with rvalue (also allows ||)
ABORT() :BOOLEAN

|

Returns a flag indicating whether or not the user aborted the display of data via
NK/NX or answering no to a MORE? Prompt

ABSSvar:integerg :INTEGER

Returns the absolute value of "var"

AND(varl:integer,var2:integer) :INTEGER

Returns the bitwise and of two integer expressions
See also : Or Xor Not

ANSION() :BOOLEAN
|

Returns TRUE if the user has ANSI capabilities
See also : OnLocal GrafMode

ASC(var:string) :INTEGER

Returns the ASCII value (0-255) of the first character of "var"
See also : Chr

BZWSvarl:integer,varZ:integer: :INTEGER

Returns a word built from two byte sized values by the formula:
(varl1*0100h+var?2)

CALLID() :STRING
Returns the caller ID string
CALLNUM“ INTEGER
Returns the caller number of the current user.

CARRIER() :INTEGER
|

Returns the carrier speed as reported by the modem to PCBoard
See also : ErrCorrect

CCTYPE(var:string) :STRING
|

Returns the issuer of credit card number "var"
See also : FmtCC InputCC ValCC

CDON() :BOOLEAN
|
Returns TRUE if the carrier detect signal is on
See also : CdCheckOn CdCheckOff
CHATSTAT() :BOOLEAN
|
Return the current users chat availability status (TRUE means available, FALSE means

unavailable).
See also : PageStat

CHRSvar:integera :BIGSTR

Returns a single character long string of the character represented by ASCII code
"var" (0-255)
See also : Asc

CONFREG(confNum:integer) :BOOLEAN

Returns TRUE if users registered flag is set, FALSE otherwise
See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
ConfFlag ConfUnFlag Join ConfAlias Lastin

CONFEXP(confNum:integer)

Returns TRUE if users expired flag is set, FALSE otherwise

NOTE:

ConfReg() = FALSE & CONFEXP = TRUE, user locked out ConfReg() = TRUE &
CONFEXP = TRUE, user reg & exp

See also : ConfSel ConfSys ConfMw CurConf CurConf

ConfFlag ConfUnFlag Join ConfAlias Lastln

ConfReg

CONFSELScoanum:integera :BOOLEAN

Returns TRUE if user has selected the conference, FALSE otherwise
See also : ConfSys ConfMwCurConf ConfExp CurConf

ConfFlag ConfUnFlag Join ConfAlias Lastin

ConfReg

CONESYS(confNum:integer) :BOOLEAN

Returns TRUE if user has conference SysOp access, FALSE otherwise
See also : ConfSel ConfMwCurConf ConfExp CurConf

ConfFlag ConfUnFlag Join ConfAlias Lastin

ConfReg

CONEMW (confNum:integer) :BOOLEAN
Returns TRUE if user has mail waiting in conference "confnum", FALSE otherwise
See also : ConfSel ConfSys CurConf ConfExp CurConf

ConfFlag ConfUnFlag Join ConfAlias Lastin
ConfReg

CURCOLOR() :INTEGER

|
Returns the current color (0-255) in use by the ANSI driver
See also : DefColor

CURCONFE() :INTEGER
|

Returns the current conference number

See also : ConfSel ConfSys ConfMw ConfExp CurConf
ConfFlag ConfUnFlag Join ConfAlias LastIn
ConfReg

CURSEC() :INTEGER
|

Returns the users current security level
See also : SysopSec

o
DATE() :DATE
|

Returns todays date
See also : Time

DAY (datevar:date) :INTEGER

Returns the day of the month (1-31) of "datevar" OO0
See also : Month Year Dow

DBGLEVEL: : INTEGER

Returns the debug level in effect

DBGLEVEL dbg:integer

Set the debug level to "dbg"

DEFANS: : :BIGSTR

Returns the last default answer passed to an Input statement. For example, this
allows a PPE to determine what the default answer would have been had a PCBTEXT
prompt not been replaced with a PPE.

See also : LastAns

DEFCOLOR() :INTEGER

Returns the default color as specified in PCBSetup

DEFCOLOR
I

Resets the current color to the system default
See also : CurColor

DOW(day:date) :INTEGER

Returns the day of the week (0 = Sunday, 6 = Saturday) that "day" fell on OO
See also : Date Month Year

ERRCORRECT() :BOOLEAN
|

Returns TRUE if a session is determined to be error corrected (or FALSE for non-error
corrected sessions).
See also : Carrier

EVTTIMEADJ() :BOOLEAN

Detects if the users time has been adjusted for an upcoming event. This is useful to
detect if a users time left can be increased with the AdjTime statement.
See also : AdjTime

EXISTSfiIe:string: :BOOLEAN

Returns a boolean TRUE value if the file "file" exists
See also : Delete Copy Append FileInf Rename

FERR(channel:integer) :BOOLEAN

Returns TRUE if a file access error occurred on channel "channel™ since the file was
opened or FERR was last called
See also : FOpen

o
FILEINF(file:string,option:integer) :MULTITYPE

Returns a piece of information (specified by "option™) about the file "file"
Valid values for "options”: 1 = Return TRUE if file exists
2 = Return file date stamp
3 = Return file time stamp
4 = Return file size
5 = Return file attributes
01h = Read Only
02h = Hidden
04h = System
20h = Archive
6 = Return file drive
7 = Return file path
8 = Return file base name
9 = Return file extension

Return value type is depending on the info requested. It may be BOOLEAN, DATE,
INTEGER, STRING and TIME
See also : Delete Copy Append Exist Rename

FMTCC(format:strinf) :STRING
|

Returns a formatted credit card number based on "format" OO
See also CcType ValCC InputCC

FMTREAL(realExp:real/dreal,fieldWidth:integer,decimalPlaces:integer)

Formats REAL/DREAL values for display purposes.
realExp = A REAL/DREAL floating point expression
fieldWidth = The minimum number of characters to display
decimalPlaces = The number of characters to display to the right of
the decimal point

GETENV(var:string) :STRING

Returns the value of the environment variable named by "var"

GETTOKEN() :STRING
|

Returns the next string token from a prior call to Tokenize (Same as the GETTOKEN
statement but can be used in an expression without prior assignement to a variable)

GETTOKEN VAR

Get a token from a previous call to Tokenize and assign
it to VAR

See also : Tokenize TokenStr TokCount

GETX() :INTEGER

|
Returns the current column (X position) of the cursor on the display
See also : GetY AnsiPos

GETY() :INTEGER
Returns the current row (Y position) of the cursor on the display
See also : GetX AnsiPos

GRAFMODE() :STRING

|
Returns a character indicating the users graphics status

R = RIPscrip supported
G = ANSI graphics (color and positioning) supported

A = ANSI positioning (no color) supported
N = No graphics (RIP or ANSI) supported
oo
See also : AnsiOn OnLocal
]
HELPPATH() :STRING

Returns the path, as specified in PCBSetup, to the help files
See also : PPEPath SIPath TempPath

HIMSGNUM() :INTEGER

|
Returns the high message number for the current conference.
See also : LoMsgNum

HOUR(dayhour:time) :INTEGER

Returns the hour of the day (0-23) of "dayhour"
See also : Min Sec

I28$var1:inte%er,var2:inte%erz :STRING

Returns a string representing the integer value "varl" converted to base "var2"

See also : S2i String

INKEY“ :STRING

Returns the next keypress as a single character long string, or a string with the name
of the function or cursor control key
See also : Kinkey MGetByte Minkey

INSTR(varl:bigstr,var2:bigstr) :INTEGER

Returns the position of "var2" in "varl"” (1-LEN(varl)) or O if "var2" not in "varl"

ISBITSET (var:multitype, bit:integer) :BOOLEAN

Check the status of a specified bit in a variable.

This function is primarily intended to be used with BIGSTR variables
which can be up to 2048 bytes long. However, it will work with other
data types (and expressions) as well if desired.

oodg

See also : BitSet BitClear

ISNONSTOP() :BOOLEAN

Return whether or not the display is currently in non-stop mode (ie, did the user type
NS as part of their command line)
See also : StartDisp

KBDBUFSIZE() :INTEGER
Return the number of key presses pending in the KbdString buffer

See also : PPLBuUfSize KbdFlush KbdStuff KbdFile KbdString
KbdFileUsed MdmFlush KeyFlush KbdFlush

KBDFILEUSED() :BOOLEAN

Return TRUE if key presses are being stuffed via a KbdFile statement.
See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
MdmFlush KeyFlush KbdFlush KbdString

KINKEY“ :STRING

Returns the next keypress from the BBS keyboard as a single character long string, or
a string with the name of the function or cursor control key
See also : Inkey MInkey MGetByte

LANGEXT: : :STRING

Returns the file extension for the users language selection
See also : Lang

LASTANS() :STRING

function to return the last answer accepted by an Input statement.
See also : DefAns

LEFT(varl:string,var2:integer) :BIGSTR

Returns the left-most "var2" characters of "varl"
See also : Right Mid

LEN(var:bigstr) :INTEGER

Returns the length of "var"

LOGGEDON: : :BOOLEAN

Returns TRUE if the user has already logged on to the BBS, FALSE otherwise

LOMSGNUM() :INTEGER
|

Returns the low message number for the current conference.
See also : HiMsgNum
N

LOWER(var:bigstr) :BIGSTR
|

Returns a string of "var"™ with all uppercase characters converted to lowercase
characters
See also : Upper Mixed

LPRI NTED: : INTEGER

Return the number of lines printed on the display
See also : StartDisp

LTRIM(varl:bigstr,var2:string) :BIGSTR

Returns a string of "varl" with the first character of "var2" trimmed from the left
See also : Rtrim Trim

MASK_ALNUM(Q) :STRING
|

Returns a valid character mask for input statements of A through Z, a through z, and
0 through 9
See also : Mask_Alpha Mask_Ascii Mask_File Mask_Num Mask_ Path Mask_ Pwd

MASK_ALPHAQ) :STRING

Returns a valid character mask for input statements of A through Z and a through z

See also : Mask _Alnum Mask_Ascii Mask_File Mask _Num Mask_Path Mask_ Pwd
MASK _ ASCII() :STRING

Returns a valid character mask for input statements of space (" ") through tilde ("~")

o
See also : Mask_Alpha Mask_Alnum Mask_File Mask_Num Mask_Path Mask_ Pwd

MASK_FILE: : :STRING

Returns a valid character mask for input statements of file names
See also : Mask_Alpha Mask_Ascii Mask_Alnum Mask_Num Mask_ Path Mask_ Pwd

MASK_NUM() :STRING

Returns a valid character mask for input statements of O through 9
See also : Mask_Alpha Mask_Ascii Mask_File Mask_Alnum Mask_ Path Mask_ Pwd

MASK_PATH() :STRING

Returns a valid character mask for input statements of path names
See also : Mask_Alpha Mask_Ascii Mask_File Mask_Num Mask_Alnum Mask_Pwd

MASK_PWD: : :STRING

Returns a valid character mask for input statements of passwords
See also : Mask_Alpha Mask_Ascii Mask_File Mask_Num Mask Path Mask_Alnum

MAXNODE() :INTEGER

.
Returns the maximum node possible with the current software (ie, /2 would return 2,
/10 would return 10, etc)

See also : PcbNode

MEGANUM(number:integer)

Converts a decimal number (from O to 1295) to a hexa-tri-decimal number, or
meganum.

MGETBYTE() :INTEGER

Returns the value of the next byte from the modem (0-255) or -1 if there are no
bytes waiting for input
See also : Inkey Kinkey MInkey

MID(varl:bigstr,var2:integer,var3:integer) :BIGSTR

Returns a string from "varl" starting at the "var2" position of "varl" and containing
"var3" characters of "varl"
See also : Right Left

MIN(varl:time) :INTEGER
Returns the minute of the hour (0-59) of "varl"
See also : Hour Sec
MINKEY() :STRING
Returns the next keypress from the remote caller as a single character long string, or
a string with the name of the function or cursor control key

See also : Inkey Kinkey MGetByte

MINLEFT() :INTEGER

Returns the current callers minutes left to use online
See also : MinOn

MINON(Q) :INTEGER

Returns the current callers minutes online so far this session
See also : MinLeft

MIXED(varl:string)

Converts a string to mixed (or proper name) case
See also : Upper Lower

MKADDR(seg:integer, off:integer) :INTEGER

Returns a segment:offset address as a long integer built from two word sized values
by the formula: (var1*00010000h+var2)
See also : VarSeg VarOff VarAddr

MKDATE(year:integer, month:integer, day:integer) :DATE

Returns a date with the year specified by "year” (1900-2079), month specified by
"month" (1-12), and day specified by "day" (1-31).
See also : Year Month Day

I\/IODEM: : :STRING

Returns the modem connect string as reported by the modem to PCBoard
See also : Carrier

MONTH(varl:date) :INTEGER

Returns the month of the year (1-12) of "varl"
See also : Year Day Dow

NOCHAR() :STRING

Returns the current language no character
See also : YesChar

NOT(varl:integer) :INTEGER

Returns the bitwise complement (all bits inverted) of an integer expression
See also : Or And Xor

ONLOCAL() :BOOLEAN

Returns TRUE if the user is on locally
See also : AnsiOn GrafMode

OR(varl:integer, var2:integer) :INTEGER

Returns the bitwise or of two integer expressions
See also Xor And Not

PAGESTAT() :BOOLEAN

Returns TRUE if the user has paged the SysOp (or PageOn has been issued), FALSE
otherwise (or PageOff has been issued)
See also : ChatStat

PCBDAT() :STRING
|

Returns a string with the path and file name of PCBOARD.DAT
PCBNODE() :INTEGER
|
Returns the node number
See also : MaxNode
PEEKB(var:integer) :INTEGER
Returns a byte value (0-255) located at memory address "var" (PEEK is a synonym) -

o
See also : PeekDW PeekW PokeB PokeW PokeDW

PEEKDW ((var:integer) :INTEGER

Returns a signed integer value (-2147483648 - +2147483647) located at memory
address "var"
See also : PeekB PeekW PokeB PokeW PokeDW
PEEKW/((var:integer) :INTEGER
Returns a word value (0-65535) located at memory address "var"

See also : PeekDW PeekB PokeB PokeW PokeDW

PPENAME() :STRING
|

Returns the name of the currently executing PPE file minus the path and extension

See also : PPEPath

PPEPATH: : :STRING

Returns a string with the path (no file name) of the currently executing PPE file

See also : PPEName

PPLBUFSIZE: : :INTEGER

Returns the number of key presses pending in the KbdStuff buffer.
See also : KbdBufSize KbdFlush KbdStuff KbdFile KbdString
KbdFileUsed MdmFlush KeyFlush KbdFlush

PSASvar:integerg :BOOLEAN

Returns TRUE if the feature specified by "var" is enabled, FALSE if the feature
specified by "var" is disabled

Valid values for var:

1 = Alias Support Enabled

2 = Verify Support Enabled

3 = Address Support Enabled
4 = Password Support Enabled
5 = Statistics Support Enabled
6 = Notes Support Enabled

See also : TPAGet

RANDOMSvar:inte%erz :INTEGER

Returns a random number between O and "var" inclusive
READLINE(file:string, line:integer) :STRING
Read and return line number "line" from file "file"

REGAH() :INTEGER

Returns the value of the AH register after a Dolntr statement
See also : RegAl RegAx

REGAL() :INTEGER

Returns the value of the AL register after a Dolntr statement
See also : RegAh RegAx

REGAX() :INTEGER

Returns the value of the AX register after a Dolntr statement
See also : RegAh RegAl

REGBH() :INTEGER

Returns the value of the BH register after a Dolntr statement
See also : RegBl RegBx

REGBL: : INTEGER

Returns the value of the BL register after a Dolntr statement
See also : RegBh RegBx

REGBX() :INTEGER

Returns the value of the BX register after a Dolntr statement
See also : RegBh RegBlI

REGCF: : :BOOLEAN

Returns the state of the carry flag after a Dolntr statement
See also : RegF

REGCH() :INTEGER
|

Returns the value of the CH register after a Dolntr statement
See also : RegCl RegCx

REGCL() :INTEGER
|

Returns the value of the CL register after a Dolntr statement
See also : RegCh RegCx

REGCX() :INTEGER

Returns the value of the CX register after a Dolntr statement
See also : RegCh RegCl

REGDH() :INTEGER
|

Returns the value of the DH register after a Dolntr statement
See also : RegDl RegDx

REGDI“ INTEGER

Returns the value of the DI register after a Dolntr statement
See also : Dolntr

REGDL() :INTEGER
|

Returns the value of the DL register after a Dolntr statement
See also : RegDh RegDx

REGDS: : :INTEGER

Returns the value of the DS register after a Dolntr statement
See also : Dolntr

REGDX() :INTEGER

Returns the value of the DX register after a Dolntr statement
See also : RegDh RegDl

REGES() :INTEGER

Returns the value of the ES register after a Dolntr statement
See also : Dolntr

REGF() :INTEGER

Returns the value of the flags register after a Dolntr statement
See also : RegCf Dolntr

REGSI() :INTEGER

Returns the value of the Sl register after a Dolntr statement
See also : Dolntr

REPLACE(str:bigstr, search:string, replace:string) :BIGSTR

Returns a string of "str" with all occurences of the first character of "search” replaced
by the first character of "replace”

See also : ReplaceStr

REPLACESTR(str:bigstr, search:string, replace:string) :BIGSTR
|
It functions just like the Replace function except that a complete sub-string may be
specified for both search and replace
str is the string to work on

search is the string to search for
replace is the string to replace search with

See also : Replace

RIGHT (str:bigstr, len:integer) :BIGSTR

Returns the right-most "len" characters of "str"
See also : Left

RTRIM(str1:bigstr, trim:string) :BIGSTR

Returns a string of "str1" with the first character of "trim" trimmed from the right
See also : Ltrim

S2I(str:string, base:integer) :INTEGER

Returns an integer representing the string "str' converted from base "base"
See also : 12s

SCRTEXT(col:integer, row:integer, len:integer, code:boolean) :STRING

Returns a string with the text (and color information in the form of @X codes if "code"
is TRUE) from column "col", row "row", and of length "len"
See also : ScrFile

SEC(var:time) :INTEGER

Returns the second of the minute (0-59) of "var”
See also : Hour Min

SHOWSTAT() :BOOLEAN

Returns TRUE if writing to the display is active, FALSE if writing to the display is
disabled
See also : ShowOff ShowOn

SLPATH() :STRING

Returns the path, as specified in PCBSetup, to the login security files
See also : HelpPath PPEPath TempPath

SPACE(len:integer) :BIGSTR

Returns a string of spaces "len" characters long

STRING(var:multitype) :STRING

Returns "var" converted to a string
See also : 12s

STRIP(str:bigstr, char:string) :BIGSTR

Returns a string of "str" with all occurrences of the first character of "char” removed
See also : StripAtx StripStr

STRIPATX(str:bigstr) :BIGSTR

Returns a string of "str" with all @X codes removed OO
See also : Strip StripStr

STRIPSTR(str:bigstr, search:string) :BIGSTR

Functions just like the Strip function except that a complete sub-string may be
specified for search

str is the string to work on

search is the string to search for

N

See also : Strip StripAtx

SYSOPSEC() :INTEGER

Returns the SysOp security defined in PCBOARD.DAT
See also : CurSec

TEMPPATH: : :STRING

Returns the path, as specified in PCBSetup, to the temporary work directory
See also : SIPath HelpPath PPEPath

TIME() :TIME

Returns the current time
See also : TimeAP Date

TIMEAP(var:time) :STRING

Returns a string representing the time "var" in civilian format (XX:XX:XX AM)
See also : Time

TOKCOUNT() :INTEGER

Returns the number of tokens available via the GetToken statement and/or function
See also : Tokenize GetToken TokenStr

TOKENSTR() :STRING

Returns a previously tokenized string reconstructed with semi-colons separating the
component tokens
See also : Tokenize GetToken TokCount

TOtype(exp)
I

TOBOOLEAN, TOMONEY, TOSTRING, TOBIGSTR, TOINTEGER, TOUNSIGNED, TOREAL,
TODREAL, TOFLOAT, TODOUBLE, TODATE, TOEDATE, TOTIME, TOBYTE, TOWORD,
TODWORD, TOUBYTE, TOUWORD, TOUDWORD, TOSBYTE, TOSWORD, TOSDWORD,
TOSHORT, TOINT, & TOLONG
Used to force the result of an expression to a specific type
Usage: TOtype(exp) (returns type)

type is the actual type to force (BIGSTR, BOOLEAN, etc.)

exp is an expression of any type
N
See also : S2i 12s String

TRIM(str:bigstr, char:string) :BIGSTR

Returns a string of "str" with the first character of "char” trimmed from both ends
See also : Rtrim Ltrim

UPPERSstr:bigstrg :BIGSTR

Returns a string of "str" with all lowercase characters converted to uppercase
characters
See also : Lower Mixed

UN_CITY() :STRING

Returns a nodes city from USERNET.XXX after a RdUnet statement
See also : Un_Name Un_Oper Un_Stat

UN_NAME() :STRING

Returns a nodes user name from USERNET.XXX after a RdUnet statement
See also : Un_City Un_Oper Un_Stat

UN_OPER() :STRING

Returns a nodes operation text from USERNET.XXX after a RdUnet statement
See also : Un_City Un_Name Un_Stat

UN STAT“ :STRING

Returns a nodes status from USERNET.XXX after a RdUnet statement
See also : Un_City Un_Name Un_Oper

U BDL(Q) :INTEGER
Returns the current users number of bytes downloaded

See also : U_BdIDay U_Bul U_FdIU_Ful U_InConf
U LDate U_LDir U_LmrU_Logons U LTime

U MsgRd U MsgWr U Name U_PwdHistU_ PwdLc
U PwdTc U_RecNum U_Stat U _TimeOn

U_BDLDAY: : INTEGER

Returns the current users number of bytes downloaded today
See also : U BdIU Bul U _FdIU Ful U_InConf

U LDate U_LDir U_LmrU_Logons U_LTime

U MsgRd U _MsgWr U Name U_PwdHistU_ PwdLc

U PwdTc U_RecNum U_Stat U _ TimeOn

U BUL() :INTEGER

Returns the current users number of bytes uploaded
See also : U_BdIU_BdIDay U_FdIU_Ful U_InConf

U LDate U_LDir U_LmrU_Logons U_LTime

U MsgRd U_MsgWr U _Name U_PwdHistU_PwdLc
U PwdTc U _RecNum U_Stat U _ TimeOn

U _FDL() :INTEGER

Returns the current users number of files downloaded
See also : U_BdIU_BdIDay U_BulU_Ful U_InConf

U _LDate U_LDir U_LmrU_Logons U_LTime

U MsgRd U_MsgWr U _Name U_PwdHistU_PwdLc
U PwdTc U_RecNum U_Stat U_TimeOn

U FUL(Q) :INTEGER

Returns the current users number of files uploaded
See also : U_BdIU_BdIDay U_BulU_Fdl U_InConf

U LDate U_LDir U_LmrU_Logons U LTime

U MsgRd U_MsgWr U _Name U_PwdHistU_PwdLc
U PwdTc U_RecNum U_Stat U _TimeOn

U INCONF(record:integer, conf:integer) :BOOLEAN

Returns TRUE if user record number "record" is registered in conference "conf"
See also : U_BdIU_BdIDay U_BulU_Fdl U_Ful

U LDate U_LDir U_LmrU_Logons U LTime

U MsgRd U_MsgWr U _Name U_PwdHistU_PwdLc

U PwdTc U_RecNum U_Stat U _TimeOn

U LDATE() :DATE

Returns the current users last date on the system
See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful

U _InConf U_LDir U _LmrU_Logons U LTime

U MsgRd U _MsgWr U Name U_PwdHistU_ PwdLc
U PwdTc U_RecNum U_Stat U _TimeOn

U LDIR: : :DATE

Returns the current users last directory scan date
See also : U_BdIU_BdIDay U_BulU_Fdl U_Ful
U_InConf U_LDate U_LmrU_Logons U_LTime

U MsgRd U_MsgWr U _Name U_PwdHistU_PwdLc
U PwdTc U_RecNum U_Stat U _TimeOn

U LMR(confNum:integer) :INTEGER

function to return the number of the last message read for the specified conference.
See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful

U _InConf U_LDate U LDir U_Logons U_LTime

U MsgRd U MsgWr U Name U_PwdHistU_ PwdLc

U PwdTc U_RecNum U_Stat U _TimeOn

U_LOGONS: : INTEGER

Returns the current users number of times logged on
See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful

U InConf U LDate U LDir U Lmr U LTime

U MsgRd U _MsgWr U Name U_PwdHistU_ PwdLc
U PwdTc U_RecNum U_Stat U _TimeOn

U LTIME“ :TIME

Returns the current users last time on the system
See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful
U_InConf U_LDate U_LDir U_Lmr U_Logons

U MsgRd U _MsgWr U Name U_PwdHistU_ PwdLc
U PwdTc U_RecNum U_Stat U_TimeOn

U MSGRD() :INTEGER
|

Returns the number of messages the user has read
See also : U_BdIU_BdIDay U_BulU_Fdl U_Ful
U_InConf U_LDate U_LDir U_Lmr U_Logons

U LTime U_MsgWr U _Name U_PwdHistU_PwdLc
U PwdTc U_RecNum U_Stat U_TimeOn

U MSGWR() :INTEGER
|

Returns the number of messages the user has written
See also : U_BdIU_BdIDay U_BulU_Fdl U_Ful
U_InConf U_LDate U_LDir U_Lmr U_Logons

U LTime U_MsgRd U _Name U_PwdHistU PwdLc
U PwdTc U_RecNum U_Stat U_TimeOn

U NAME() :STRING
|

Returns the current users name

See also : U_BdIU_BdIDay U_BulU_Fdl U_Ful

U _InConf U _LDate U LDir U _Lmr U_Logons
U LTime U_MsgRd U_MsgWr U_PwdHistU_PwdLc
U PwdTc U_RecNum U_Stat U _TimeOn

U PWDHIST(hist:integer) :STRING

Returns the specified password from the password history Valid values for "hist" are 1
through 3

See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful

U _InConf U _LDate U LDir U _Lmr U_Logons

U LTime U _MsgRd U MsgWr U Name U_PwdLc

U PwdTc U_RecNum U_Stat U _TimeOn

U PWD LC: : :DATE

Returns the date of the last password change

See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful
U_InConf U_LDate U_LDir U_Lmr U_Logons

U LTime U_MsgRd U_MsgWr U_Name U_PwdHist
U PwdTc U_RecNum U_Stat U TimeOn

U_PWDTC: : :INTEGER

Returns the number of times the password has been changed
See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful

U_InConf U_LDate U_LDir U_Lmr U_Logons

U LTime U_MsgRd U_MsgWr U_Name U_PwdHist

U PwdLc U_RecNum U_Stat U_TimeOn

U RECNUM(user:string) :INTEGER

Returns the user record number (0-65535) for user name "user” or -1 if "user" is not
registered on this system.

See also : U_BdIU_BdIDay U_BulU_Fdl U_Ful

U InConf U _LDate U LDir U _Lmr U_Logons

U LTime U_MsgRd U _MsgWr U_Name U_PwdHist

U PwdLc U PwdTc U_Stat U_TimeOn

U STAT(option:integer) :DATE or :INTEGER

Returns a statistic about the user that is tracked by PCBoard 5111
Valid values for "option™ are 1 through 15

1 - Returns the first date the user called the system

2 - Returns the number of SysOp pages the user has requested
3 - Returns the number of group chats the user has
participated in

4 - Returns the number of comments the user has left

5 - Returns the number of 300 bps connects

6 - Returns the number of 1200 bps connects

7 - Returns the bumber of 2400 bps connects

8 - Returns the number of 9600 bps connects

9 - Returns the number of 14400 bps connects

10 - Returns the number of security violations

11 - Returns the number of "not registered in conference"
warnings

12 - Returns the number of times the users download limit
has been reached

13 - Returns the number of "file not found" warnings

14 - Returns the number of password errors the user has had
15 - Returns the number of verify errors the user has had

See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful

U InConf U _LDate U LDir U _Lmr U_Logons

U LTime U_MsgRd U_MsgWr U_Name U_PwdHist
U PwdLc U PwdTc U_RecNum U_TimeOn

U_TIMEON: : INTEGER

Returns the current users time online today in minutes
See also : U_BdIU_BdIDay U _BulU_Fdl U_Ful
U_InConf U_LDate U_LDir U_Lmr U_Logons

U LTime U_MsgRd U_MsgWr U_Name U_PwdHist
U PwdLc U PwdTc U_RecNum U_Stat

VALCCSCCnum:string: :BOOLEAN

Returns TRUE if "CCnum" is a valid credit card number
See also : ValCC InputCC CcType

VALDATE(date:string) :BOOLEAN

Returns TRUE if "date" is in a valid date format
See also : ValTime

VALTIMEStime:string: :BOOLEAN

Returns TRUE if "time" is in a valid time format
See also : ValDate

VER() :INTEGER

Returns the version number of PCBoard that is running

XOR(varl:integer, var2:integer) :INTEGER

Returns the bitwise exclusive-or of two integer expressions
See also : Or And Not

YEAR(var:date) :INTEGER

Returns the year (1900-2079) of "var"
See also : Month Day Dow

YESCHAR() :STRING

Returns the current language yes character
See also : NoChar

ADJTIME min:integer

Add or subtract "min" minutes to the users time available this session
See also : EvtTimeAdj

ANSIPOS col:integer, row:integer

If ANSI is available, position the cursor in column "col" and in row "row"
Legal ranges: 1 <= col <= 80
1 <= row <= 23 (Because of the status lines)
(1,1) is the top left corner of the screen

Note : Be aware that the user may have a different number of lines on his screen... if
the user has 50 lines for exemple and that you do an ANSIPOS sentence to position
the cursor on the 23rd line, the user will have a prompt in the middle of his screen...

See also : GetX GetY

BACKUP var:inte%er

Backup (move the cursor to the left) "var" columns without going past column 1
See also : Forward

BITCLEAR variable:multitype, bit:integer

Clears a specified bit from a variable.

This statement is primarily intended to be used with BIGSTR variables which can be
up to 2048 bytes long. However, it will work with other data types as well if desired.
Just be aware of the potential problems in 'bit twidling' non-string buffers and then
trying to access them later as their 'intended’ type without re-initializing the variable.
If the bit parameter (an integer from O to the number of bits in the object) is invalid
no processing takes place. OO

See also : BitSet IsBitSet

BITSET variable:multitype, bit:integer

Set a specified bit from a variable.

This statement is primarily intended to be used with BIGSTR variables which can be
up to 2048 bytes long. However, it will work with other data types as well if desired.
Just be aware of the potential problems in 'bit twidling' non-string buffers and then
trying to access them later as their 'intended’ type without re-initializing the variable.
If the bit parameter (an integer from O to the number of bits in the object) is invalid
no processing takes place. L1010

See also : BitClear IsBitSet

BLT bltnr:integer
Display bulletin number "bltnr"
BROADCAST varl:integer, var2:integer, message:string

Broadcast message "message" to nodes from "varl" to "var2" inclusive

oo

BYE
.

Same as having the user type BYE from the command prompt
See also : Goodbye Hangup DtrOff

CALL Eﬁename

Load and execute PPE filename specified by "ppename™
See also : Shell

CDCHKOFF
I

Turn off carrier detect checking
See also : CdCheckOn CdOn

CDCHKON
I

Turn on carrier detect checking
See also : CdCheckOff CdOn

CHAT
L

Initiate SysOp chat mode
See also : ChatStat PageStat

CLOSECAP
I

Close the capture file previously opened with OpenCap
See also OpenCap

CLREOL
[

Clear to the end of the line, with the current color if in ANSI mode
See also : Cls

oono

CLS
[

Clear the screen, with the current color if in ANSI mode
See also : CirEol

COLOR clr:integer

Change the current color to "clr”
See also : CurColor DefColor

CONFFLAG conf:integer, flags:integer
Turn on the conference "conf" flags specified by "flags"

See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
ConfUnFlag Join ConfAlias Lastin ConfReg

CONFUNFLAG conf:integer, flags:integer

Turn off the conference "conf" flags specified by "flags"
See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
ConfFlag Join ConfAlias Lastin ConfReg

DEC var:multitype

Decrement the value of var
See also : Inc

DELAY dlay:integer

Pause for "dlay" clock ticks (1 clock tick = 1/18.2 second)
See also : Wait

DELETE file:string

Deletes the filename specified by "file" (ERASE is a synonym)
See also : Copy Append Exist FileInf Rename

DELUSER

Flags the current user record for deletion

DIR arg:string

Performs a file directory command, passing it "arg" as arguments

DISPFILE file:string, flag:integer

Display file "file" with "flag" alternate file flags
valid flags : GRAPH
SEC
LANG

See also : DispStr

DISPSTR var:string

Display file if "var" is "%filename", execute PPE if "var" is "!filename", or display
string "var"

DISPTEXT Rromﬁtnr:inte%er, fla%son:inte%er

Display PCBTEXT prompt "promptnr” using flags "flagson”
valid flags : NEWLINE
LFBEFORE
LFAFTER
BELL
LOGIT

LOGITLEFT
See also : DispFile

DOINTR intr, ax, bx, cx, dx, si, di, flags, ds, es (all is integer)

Generate interrupt number "intr" (0-255) with the register values passed as
parameters

Note : Use Dolntr at your own risks !
See also : RegAx RegAh RegAl
RegBx RegBh RegBlI

RegCx RegCh RegCl

RegDx RegDh RegDI

RegDi RegEs RegSi

RegDs RegCf RegF

DTROFF
I

Turn off the DTR signal

Note : on most modems, lowering DTR will cause modem to hangup... this is a good
way if you want to simulate a bad connection, and then hangup without goodbye
screens... This is the best way for you, the nice sysop, to free your line quickly... :)
See also : DtrOn Goodbye Bye Hangup

DTRON
|

Turn on the DTR signal
See also : DtrOff

oono

END
[

End PPE execution
See also : End If End While

FAPPEND chnl:integer, file:string, access:integer, shrmod:integer

Use channel "chnl” to open file "file" in append mode with access mode "access" and
share mode "shrmod"

valid channels: 0 - 7 [O is used for script questionnaires]

valid access modes : O_RD, O_WR, O_RW [should use O_RW]

valid share modes : S DN, S DR, S DW, S DB
See also : FOpen FClose FCreate

FCLOSE chnl:integer
|

Close channel "chnl"
Accept channel -1 as the ReadLine() function 'channel' and close it
See also : FAppend FClose FCreate FFlush

FCREATE chnl:integer, file:string, access:integer, shrmod:integer

Use channel "chnl" to create and open file "file" in access mode "access" and share
mode "shrmod"

valid channels: 0 - 7 [O is used for script questionnaires]

valid access modes : O_RD, O_WR, O_RW [should use O_WR]

valid share modes : S DN, S DR, S DW, S DB
See also : FOpen FClose FAppend

FGET chnl:integer, var:multitype

Read a line from channel "chnl" and assign it to "var"
See also : FPut FPutLn FPutPad FRead

FOPEN chnl:integer, file:string, access:integer, shrmod:integer

Use channel "chnl" to open file "file" in access mode "access" and share mode
"shrmod™

valid channels: O - 7 [O is used for script questionnaires]

valid access modes : O_RD, O_WR, O_RW

valid share modes : S DN, S DR, S DW, S_DB
See also : FCreate FClose FAppend FDefln FDefOut

FOR ... NEXT
|
Usage :

FOR VAR = start:integer TO stop:integer [STEP incstep:integer]
NEXT

FOR - Initializes a loop by assigning "start” to VAR and continuing while VAR <=
"stop" (if "incstep” >= 0) or VAR >= "stop" (if "incstep” < 0) (TO is required to
separate "start" and "stop". If STEP (optional) is not specified "incstep™ defaults to 1)
NEXT - Adds "incstep" to VAR, transfers control to the closest FOR statement, and
marks the end of the FOR loop

See also : While...EndWhile If...Then

FORWARD var:integer

Move the cursor forward (to the right) "var" columns without going past column 80
See also : Backup

FPUT chnl:integer, str:string[, str:string...]

Write one or more "str" out to channel "chnl"
See also : FGet FPutLn FPutPad FWrite FWrite

FPUTLN chnl:integer[, str:string[, str:string...]]

|
Write zero or more "str" out to channel "chnl" and terminate with a carriage
return/line feed pair

See also : FGet FPut FPutPad FRead FWrite

FPUTPAD chnl:integer, str:string, len:integer

Write out "str", padding or truncating to length "len" as needed, to channel "chnl"
See also : FGet FPut FPutLn FRead FWrite

FRESHLINE
L]

If the cursor is not in column 1, do a newline
See also : NewLine NewLines

FREWIND chnl:integer

Rewind channel "chnl" after flushing buffers and committing the file to disk.
See also : FSeek

GETUSER

Fill the predefined variables (U_...) with current information from the user record

GOSUB LABEL

Transfer control to LABEL, marking the current PPE location for a future Return
statement (GO SUB is a synonym)
See also : GoTo
N
GOTO LABEL
|

Transfer control to LABEL (GO TO is a synonym)
See also : GoSub

GOODBYE
I

Same as having the user type G from the command prompt L1000
See also : Bye DtrOff Hangup

HANGUP

]
Hangup on the user without any notification
See also : Bye Goodbye DtrOff

IF ... THEN ... ELSE
|
Usage 1:
IF (exp:boolean) statement ...
Evaluate "exp" and, if true, execute statement; otherwise skip to the next statement
Usage 2:
IF (exp:boolean) THEN

ELSEIF (exp2:boolean) THEN

ELSE

ENDIF
IF - If expression cond is TRUE then this statement transfers control to the
statement(s) following it, otherwise control is tranferred to the next ELSEIF, ELSE or
ENDIF statement (requires THEN [or DO] after the condition)
ELSEIF - (optional) If expression cond is TRUE then this statement transfers control to
the statements following it, otherwise control is tranferred to the next ELSEIF, ELSE
or ENDIF statement There may be multiple ELSEIF statements between the IF and
ELSE statements (ELSE IF is a synonym; nothing is required to come after the
condition, although THEN [or DO] may appear for clarification and consistency in the
source code)
ELSE - (optional) Separates the false portion of an IF/ELSEIF statement from the true
portion

ENDIF - Ends an IF/ELSEIF/ELSE statement block (END IF is a synonym)
See also : While...EndWhile For...Next

INC var:multitype

|

Increment the value of "var"
See also : Dec

INPUT prompt:string, var:string

Display "prompt" and get input from user, assigning it to "var" (60 characters
maximum)

See also : InputCC InputDate Inputint InputMoney InputStr

InputText InputTime InputYN

INPUTCC prompt:string, var:string, color:integer

Display "prompt™ in color "color" and get a credit card formatted string from the user,
assigning it to "var" (16 characters maximum, valid characters 0-9)

See also : InputlnputDate Inputint InputMoney InputStr

InputText InputTime InputYN

INPUTDATE prompt:string, var:string, color:integer

Display "prompt™ in color "color" and get a date formatted string from the user,
assigning it to "var" (8 characters maximum, valid characters 0-9 - /)

See also : InputlnputCC Inputint InputMoney InputStr

InputText InputTime InputYN

INPUTINT prompt:string, var:string, color:integer

Display "prompt™ in color "color" and get an integer formatted string from the user,
assigning it to "var" (11 characters maximum, valid characters 0-9)

See also : InputlnputCC InputDate InputMoney InputStr

InputText InputTime InputYN

INPUTMONEY prompt:string, var:string, color:integer

Display "prompt™ in color "color" and get a money formatted string from the user,
assigning it to "var" (13 characters maximum, valid characters 0-9 $.)

See also : InputlnputCC InputDate Inputint InputStr

InputText InputTime InputYN

INPUTSTR...
|

Usage :

INPUTSTR prompt:string, var:string, color:integer, len:integer, valid:string,
flags:string
Display "prompt™ in color "color" and get a string (maximum length "len"”, valid
characters "valid", flags "flags") from the user, assigning it to "var"

valid length : 1-256

valid characters : any string

valid flags : ECHODOTS

FIELDLEN

GUIDE

UPCASE

STACKED

ERASELINE

NEWLINE

LFBEFORE

LFAFTER

WORDWRAP

NOCLEAR

HIGHASCII

AUTO

YESNO
See also : InputlnputCC InputDate Inputint InputMoney
InputText InputTime InputYN

INPUTTEXT prompt:string, var:string, color:integer, len:integer

Display "prompt™ in color "color" and get a string (maximum length "len™) from the
user, assigning it to "var"

See also : InputlnputCC InputDate Inputint InputMoney

InputStr InputTime InputYN

INPUTTIME prompt:string, var:string, color:integer

Display "prompt" in color "color" and get a time formatted string from the user,
assigning it to "var" (8 characters maximum, valid characters 0-9 :)

See also : Input InputCC InputDate Inputint InputMoney

InputStr InputText InputYN

INPUTYN prompt:string, var:string, color:integer

Display "prompt™ in color "color” and get a yes/no response from the user, assigning
it to "var" (1 characters maximum, valid characters determined by language)

See also : InputlnputCC InputDate Inputint InputMoney

InputStr InputText InputTime

JOIN conf:integer

Performs a join conference command, passing it "conf" as arguments
See also : ConfSel ConfSys ConfMwCurConf ConfExp

CurConf ConfFlag ConfUnFlag ConfAlias Lastln

ConfReg

KBDCHKOFF

Turn off keyboard time out checking

KBDCHKON

Turn on keyboard time out checking

KBDFILE file:string

Stuff the keyboard buffer with the contents of file "file"
See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdString
KbdFileUsed MdmFlush KeyFlush KbdFlush

KBDSTUFF str:string

Stuff the keyboard buffer with the contents of "str"
See also : KbdBufSize PPLBufSize KbdFlush KbdFile KbdString
KbdFileUsed MdmFlush KeyFlush KbdFlush

LET var:multitype = EXP

Evaluate expression "EXP", convert and assign to "VAR"

NOTE: LET is the only optional keyword. If no keyword is found, LET is assumed.
There are certain circumstances where it may be required, such as assignment to a
variable named the same as a statement. PRINT, for example, would require a line
such as LET PRINT = TRUE instead of just PRINT = TRUE)

LOG str:string, just:boolean

Write string "str” to the callers log, left justified if "just” is TRUE
MESSAGE...
Usage :

MESSAGE conf:integer, to:string, from:string, subject:string, sec:string,
msgdate:date, retreceipt:boolean, echo:boolean, file:string

Write a message in conference "conf", to user "to" (empty string defaults to current
caller), from user "from" (empty string defaults to current caller), subject "subject”,
security in "sec” (N or R; N is the default), pack out date in "msgdate” (O for no pack
out date), "retreceipt” True if return receipt desired, "echo™ TRUE if message should
be echoed, and "file" is the filename to use for the message text

MORE
I

Displays a MORE? prompt
See also : Wait Delay

MOUSEREG num,x1,y1,x2,y2,fontX,fontY,invert,clear,text

Set up a RIP mouse region on the remote terminal.
num = Is the RIP region number
x1,yl = The (X,Y) coordinates of the upper-left of the region
x2,y2 = The (X,Y) coordinates of the lower-right of the region
fontX = The width of each character in pixels
fontY = The height of each character in pixels
invert = A boolean flag (TRUE to invert the region when clicked)
clear = A boolean flag (TRUE to clear and full screen the text window)
text = Text that the remote terminal should transmit when the region
is clicked
See also : GrafMode

MPRINT str:string[, str:string...]

Display one or more string expressions on the callers screen only (this statement
does not send anything to the BBS screen)
See also : MPrintLn Print PrintLn SPrint SPrintLn

MPRINTLN [str:string[, str:string...]]

Display zero or more string expressions on the callers screen only and follow with a
newline (this statement does not send anything to the BBS screen)
See also : MPrint Print PrintLn SPrint SPrintLn

NEWLINE
I

Write a newline to the display O[]
See also : NewLines FreshLine

NEWLINES var
|

Write "var" newlines to the display 1L
See also : NewLine FreshLine

OPENCAP caﬁtfile:strin%, error:boolean

Open "captfile” and capture all screen output to it.

If an error occurs creating or opening "captfile”, "error" is set to TRUE, otherwise
"error" is set to FALSE.

See also : CloseCap

OPTEXT str:string

Writes string "str" into the @OPTEXT@ macro
PAGEOFF
I

Turn off the SysOp paged indicator (flashing p on status line)
See also : PageOn

PAGEON
[

Turn on the SysOp paged indicator (flashing p on status line)
See also : PageOff

POKEB addr:integer, val:integer

Assign the value "val" (0-255) to memory address "addr" (POKE is a synonym)LI[1[]
See also : PeekB PeekDW PeekW PokeW PokeDW

POKEDW addr:integer, val:integer

Assign the value "val" (-2147483648 - +2147483647) to memory address "addr”
See also : PeekB PeekDW PeekW PokeB PokeW

POKEW addr:integer, val:integer

Assign the value "val" (0-65535) to memory address "addr"
See also : PeekB PeekDW PeekW PokeB PokeDW

POP varl ,var...l

Pop values (previously pushed onto the stack) into a list of variables
See also : Push

PRFOUND & PRFOUNDLN
|
These work just like Print and PrintLn but, if the last SearchFind statement resulted in

a match, it will automatically highlight found words.
See also : SearchFind

PRINT str:stringl, str:strin%...]

Display one or more string expressions
See also : MPrint MPrintLn PrintLn SPrint SPrintLn

PRINTLN [str:string[, str:string...]]
N

Display zero or more string expressions and follow with a newline
See also : MPrint MPrintLn Print SPrint SPrintLn

PROMPTSTR prompt:integer, var:string, len:integer, valid:string, flags:integer

Display PCBTEXT entry "prompt" and get a string (maximum length "len", valid
characters "valid"”, flags "flags™) from the user, assigning it to "var"
valid length: 1-256
valid characters : any string
valid flags : ECHODOTS
FIELDLEN
GUIDE
UPCASE
STACKED
ERASELINE
NEWLINE
LFBEFORE
LFAFTER
WORDWRAP
NOCLEAR
HIGHASCII
AUTO
YESNO
See also : DispText

PUSH var[,var...]

Push a list of evaluated expressions onto the stack
See also : Pop

PUTUSER

Write the information from the predefined variables (U_...) to the user record

This statement is only intended to update user information if a successful GetUser or
GetAltUser was issued previously. This was done to ensure that information for the
current user wasn't written to another user or vice versa.

See also : GetUser

QUEST nr:integer
Do script questionnaire "nr"

RDUNET node:inte%er

Read information from USERNET.XXX for node "node"
See also : RdUsys WrUnet WrUsys

RDUSYS

Reads a USERS.SYS file, if present, and updates the users record
See also : RdUnet WrUnet WrUsys

RENAME oldname:string, newname:strin%

Rename file "oldname" to "newname"

See also : Delete Copy Append Exist FileInf

RESETDISP

Reset the display after an user abort
RESTSCRN
I

Restore the screen from the buffer previously saved with SaveScrn
See also : SaveScrn

RETURN

Return to the statement after the last GoSub or, if no GoSub is waiting for a RETURN,
End the PPE

SAVESCRN

Save the current screen in a buffer for later restoration with the RestScrn
See also : RestScrn

SCRFILE lineVar, filenameVar

Find a file name and line number that is currently on the screen.

lineVar= Should be set before calling to the line number to start searching on (1 is
the top line); Will be set to the line number where the file name was found or O if no
file name was found filenameVar = Will be set to the file name if one is found on
screen

See also : ScrText

SENDMODEM str:string
Send the text in "str" out to the modem
SEARCHINIT criteria, caseSensitive

Initialize search parameters for a faster BOYER-MOORE search algorithm.

criteria = A string expression with the search criteria in the same format used by
PCBoard (ie, "THIS & THAT | BOB") caseSensitive = A boolean flag (TRUE to force a
case sensitive search, FALSE otherwise)

See also : SearchFind PRFound/PRFoundLn SearchStop

SEARCHFIND bufferEer, foundVar

Execute a BOYER-MOORE search on a text buffer using criteria previously defined
with a Searchlnit statement.

bufferExpr = The buffer to search foundvVar = Set to TRUE if bufferExpr contains the
search criteria, FALSE otherwise

See also : Searchlnit PRFound/PRFoundLn SearchStop

SEARCHSTOP
I

Clears out previously entered search criteria. It takes no parameters.

See also : Searchlnit SearchFind PRFound/PRFoundLn
SHELL com:boolean, code:integer, prog:string, arg:string

Shell (via COMMAND.COM if "com" is TRUE) to program/command "prog" with
arguments "arg", saving the return value in "var"

NOTE: If "com" is TRUE, the value assigned to "var" will be the return code of
COMMAND.COM, not "prog")

See also : Call

SHOWOFF
I

Turns off display of information to the screen OO
See also : ShowStat ShowOn

SHOWON

I
Turns on display of information to the screen
See also : ShowStat ShowOff

SORT sortArry, pointerArray

Sort the contents of an array into a pointer array.

sortArray = The data to sort (Any type may be used for this array)
pointerArray = An integer array which will be used as an array of pointers into
sortArray for accessing sortArray in sorted order (This array should be of type
INTEGER)

Note that sortArray and pointerArray are restricted to one (1) dimensional arrays.
The following is an example of displaying an array in unsorted and sorted order:
STRING s(999) ; Remember that arrays are O-based, so these statements
INTEGER p(999) ; will allocate 1000 elements each
; Do something here to read data into s
SORT s,p
INTEGER i
FOR i =0 TO 999 ; This loop will display in unsorted order
PRINTLN s(i)
NEXT
FOR i =0 TO 999 ; This loop will display in sorted order
PRINTLN s(p(i))
NEXT

SOUND freqg:integer

Turn on the BBS PC speaker at the frequency (1-65535) specified by "freq"” (or turn it
off if the frequency is 0)

SPRINT str:string[, str:string...]
Display one or more string expressions on the BBS screen only (this statement does

not send anything to the modem)
See also : MPrintLn MPrint Print PrintLn SPrintLn

SPRINTLN [str:string[, str:string...]]

Display zero or more string expressions on the BBS screen only and follow with a
newline (this statement does not send anything to the modem)
See also : MPrintLn MPrint Print PrintLn SPrint

STARTDISP mode:integer

Start display monitoring in mode "mode"™
valid modes : NC

» T
— 0z
o mwm
o

Abort PPE execution without appending answers (channel 0) to the answer file
See also : End

TOKENIZE str:string

Tokenize string "string" into individual items separated by semi-colons or spaces
See also : GetToken TokenStr TokCount

TPAGET keyWord, infoVar

Get static information from a named TPA in string format.
keyword = The keyword of the TPA to use

infovVar = The variable into which to store the information
See also : Psa TPAPut TPACGet TPACPut TPARead
TPAWrite TPACRead TPACWrite

TPAPUT kezWord, infoExEr

Put static information to a named TPA in string format.
keyword = The keyword of the TPA to use

infoExpr = The expression to write to store the TPA
See also : Psa TPACGet TPACPut TPARead
TPAWrite TPACRead TPACWrite TPAGet

TPACGET kezWord, infoVar, confNum

Get information from a named TPA for a specified conference in string format.
keyword = The keyword of the TPA to use

infoVar = The variable into which to store the information

confNum = The conference number for which to retrieve information

See also : Psa TPAPut TPACPut TPARead

TPAWTrite TPACRead TPACWrite TPAGet

TPACPUT keyWord, infoExpr, confNum
Put information to a named TPA for a specified conference in string format.

keyword = The keyword of the TPA to use
infoExpr = The expression to write to store the TPA

confNum = The conference number for which to retrieve information
See also : Psa TPAPut TPACGet TPARead
TPAWTrite TPACRead TPACWTrite TPAGet

TPAREAD keyWord, infoVar

Get static information from a named TPA.

keyword = The keyword of the TPA to use

infovar = The variable into which to store the information
See also : Psa TPAPut TPACGet TPACPut

TPAWTrite TPACRead TPACWrite TPAGet

TPAWRITE keyWord, infoExpr

Put static information to a named TPA.

keyword = The keyword of the TPA to use

infoExpr = The expression to write to store the TPA

See also : Psa TPAPut TPACGet TPACPut TPARead
TPACRead TPACWrite TPAGet

TPACREAD keyWord, infoVar, confNum

Get information from a named TPA for a specified conference.
keyword = The keyword of the TPA to use

infoVar = The variable into which to store the information

confNum = The conference number for which to retrieve information
See also : Psa TPAPut TPACGet TPACPut TPARead

TPAWTrite TPACWrite TPAGet

TPACWRITE kexWord, infoEer, confNum

Put information to a named TPA for a specified conference.

keyword = The keyword of the TPA to use

infoExpr = The expression to write to store the TPA

confNum = The conference number for which to retrieve information
See also : Psa TPAPut TPACGet TPACPut TPARead

TPAWrite TPACRead TPAGet

VARADDR varl:multitype, var2:integer

Assign the address (segment and offset) of "varl” to "var2"
See also : VarSeg VarOff MkAddr

VAROFF varl:multitype, var2:integer

Assign the offset address of "varl" to "var2"
See also : VarSeg VarAddr MkAddr

VARSEG varl:multitype, var2:integer

Assign the segment address of "varl" to "var2"
See also : VarOff VarOff MkAddr

WAIT
L

Displays a PRESS ENTER TO CONTINUE? prompt
See also : More Delay Wait For

WAITFOR prompt:string, var:boolean, time:integer

Wait up to "time" seconds for the string "prompt", assigned TRUE to "var" if the string
is found in the time specified or FALSE if the string is not found (WAIT FOR is a
synonym)

See also : Wait

WHILE...

]

Usage 1:

WHILE (exp:boolean) statement ...
While "exp" is true execute statement; when "exp" is false execute following
statements

oo
Usage 2:
WHILE (exp) DO
ENDWHILE

WHILE - While "exp" is true execute statement(s); when "exp" is false transfer control
to the first statement following the ENDWHILE statement (requires DO [or THEN]
after the expression)

ENDWHILE - Transfers control to the closest WHILE statement and marks the end of
the WHILE loop (END WHILE is a synonym)

See also : If..Then For...Next

WRUNET...

]

Usage :
WRUNET node:integer, nodestat:string, nhodeusername:string,newnodecity:string,
newoptext:string,broacasttext:string

Write information to USERNET.XXX for node "node", where "nodestat” is the new
node status, "nodeusername” is the new node user name, "newnodecity"” is the new
node city, "newoptext" is the new node operation text, and "broadcasttext” is
broadcast text

See also : RdUnet RdUsys WrUsys

WRUSYS
I

Writes (creates) a USERS.SYS file which can be used by a SHELLed application
See also : RdUnet RdUsys WrUnet

BREAK
|

Can be used to break out of a WHILE or FOR loop without the use of a GOTO
statement
See also : Continue Quit

QUIT
|

Can be used to break out of a WHILE or FOR loop without the use of a GOTO
statement (alias for BREAK)
See also : Continue Quit

CONTINUE
I

Can be used to abort the current iteration of a WHILE or FOR loop and resume with
the next iteration of the loop OO
See also : Quit Break Loop

LOOP
L

Can be used to abort the current iteration of a WHILE or FOR loop and resume with

the next iteration of the loop (alias for CONTINUE)
See also : Quit Break Continue

FFLUSH chnl:integer

flush a specified channels changes to disk
See also : FClose

FSEEK chnl:integer, byte:integer, position:integer

Position to any random location within a file
bytes is the number of bytes to move (+/-) relative to position

position is the base location to start the seek from

SEEK_SET (0) for the beginning of the file
SEEK CUR (1) for the current file pointer location

SEEK_END (2) for the end of the file
See also : FRewind

FREAD chnl:integer, var:multitype, size:integer

Read binary data from a file
var is the variable into which data should be read

size is the size of data to read into var (0 - 2048)
See also : FGet

FWRITE chnl:integer, exp:multitype, size:integer

Write binary data to a file
exp is the expression whose result should be written

size is the size of data to write to var
See also : FPut FPutPad FPutLn

FDEFIN chnl:integer

Specify a default input file channel (used to speed up file input)
See also : FOpen

FDEFOUT chnl:integer

Specify a default output file channel (used to speed up file output)
See also : FOpen

FDGET var:multitype

Default channel input statement: use the exact same arguments as FGet except a

channel parameter (the channel specified by FDefln is assumed)
See also : FDPut FDPutPad FDPutLn FDRead FDWrite

|

FDREAD var:multitype, size:integer

Default channel input statement: use the exact same arguments as FRead except a
channel parameter (the channel specified by FDefln is assumed)

See also : FDPut FDPutPad FDPutLn FDGet FDWrite

FDPUT str:string[, str:string...]

Default channel output statement: use the exact same arguments as FPut except a
channel parameter (the channel specified by FDefOut is assumed)
See also : FDRead FDPutPad FDPutLn FDGet FDWrite

FDPUTLN str:string][, str:string...]

Default channel output statement: use the exact same arguments as FPutLn except a
channel parameter (the channel specified by FDefOut is assumed)
See also : FDRead FDPutPad FDPut FDGet FDWrite

FDPUTPAD str:string, len:integer

Default channel output statement: use the exact same arguments as FPutPad except
a channel parameter (the channel specified by FDefOut is assumed)
See also : FDRead FDPutLn FDPut FDGet FDWrite

FDWRITE exp:multitype, size:integer

Default channel output statement: use the exact same arguments as FWrite except a
channel parameter (the channel specified by FDefOut is assumed)
See also : FDRead FDPutPad FDPut FDGet FDPutPad

REDIM
L

Dynamically redimension an array at run-time

To use it you must declare the array in advance with the number subscripts desired.
This allows the compiler to perform it's standard error checking on subscripts. For
example:

STRING s(1,1,1)

REDIM s,5,5,5

LET s(4,4,4) = "Hello, World!"

PRINTLN s(4,4,4)

If an attempt is made to redimension an array with a different number of dimensions,
an error or warning (as appropriate) will be generated.

See also : Compilation Options

APPEND srcfile:strin%, destfile:string

Append the contents of one file to another file.
ie:

APPEND "SRCFILE","DSTFILE"

See also : Delete Copy Exist FileInf Rename

COPY srcfile:strin%, destfile:string

Copy the contents of one file to another file.
ie:

i

COPY "SRCFILE","DSTFILE"

See also : Delete Append Exist FileInf Rename

LASTIN conf:integer
|

Set the users last conference in value. It can be used during the logon process to
force the user into a particular conference at start up (for example, from a logon
script).

See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf

ConfFlag ConfUnFlag Join ConfAlias ConfReg

FLAG filepath:string

Allow flagging files for download directly from a PPE.

ie:

FLAG "C:\PATH\FILENAME.ZIP" ; Or whatever file name desired

Note that FLAG does not attempt to honor restrictions in the FSEC and/or
DLPATH.LST files. This allows you to flag up any file desired.

See also : FlagCnt Download

DOWNLOAD cmd:string
|

Downloading files from PPL.
ie:

N

DOWNLOAD "CMD;CMD;CMD"

The string passed to DOWNLOAD is a list of commands in the same format as what a
user would type after a D or DB command.

If a file name for download is specified here it must be downloadable according to the
criteria established in the FSEC and DLPATH.LST files.

If it is necessary to download a file not normally available via the FSEC and/or
DLPATH.LST files the FLAG statement may be used to force it into the list of files to
download.

See also : Flag

FLAGCNT()
|

Return the number of files flagged for download.
See also : Flag

WRUSYSDOOR str:strin%

Write a USERS.SYS file with a TPA record for a DOOR application.
ie:

oodg

WRUSYSDOOR "DOORNAME"

See also : WrUsys

KBDSTRING str:string

Stuff strings to the keyboard (just like KbdStuff except ‘keystrokes' are echoed to the
display)

See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
KbdFileUsed MdmFlush KeyFlush KbdFlush

KBDFLUSH
I

Flush the local keyboard buffer and any stuffed keystroke buffers. It takes no
arguments.

See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile

KbdFileUsed MdmFlush KbdFlush KbdString

MDMFLUSH
I

Flush the incoming modem buffer. It takes no arguments.
See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
KbdFileUsed KeyFlush KbdFlush KbdString

KEYFLUSH
I

Flush both the local buffers and the incoming modem buffer. It takes no arguments.
See also : KbdBufSize PPLBufSize KbdFlush KbdStuff KbdFile
KbdFileUsed MdmFlush KbdFlush KbdString

ALIAS yesno:boolean
.

Allow PPE control of whether or not the user is using an alias
See also : PSA(1) UserAlias

ALIAS: : :BOOLEAN

Return the users current ALIAS setting (TRUE = alias use on, FALSE = alias use off)
See also : TPAGet

CONFALIAS()
|

Return TRUE if the current conference is configured to allow aliases vLI[1[]
See also : ConfSel ConfSys ConfMw CurConf ConfExp CurConf
ConfFlag ConfUnFlag Join Lastin ConfReg

USERALIAS: : :BOOLEAN

Return TRUE if the current user is allowed to use an alias
See also : Alias

LANG
L

Change the language in use by the current user.
ie:

LANG langNum

See also : LangExt

ADJBYTES bytes:integer

Adjust the users total and daily download

To subtract bytes use a negative number for bytes. To add bytes use a positive
number.

See also : AdjDBytes AdjTBytes AdjTFiles

ADJDBYTES bytes:integer

Adjust the users daily download bytes.

To subtract bytes use a negative number for bytes. To add bytes use a positive
number.

See also : AdjTBytes AdjTFiles AdjBytes

ADJTBYTES bytes:integer

Adjust the users total download bytes.

To subtract bytes use a negative number for bytes. To add bytes use a positive
number.

See also : AdjDBytes AdjTFiles AdjBytes

ADJTFILES files:integer

Adjust the users total download files.
To subtract files use a negative number for files. To add files use a positive number.
See also : AdjDBytes AdjTBytes AdjBytes

PUTALTUSER
I

Put user information. It is merely an alias for PutUser and may be used anywhere
that PUTUSER would be used.
See also : GetAltUser

GETALTUSER user:integer

Get the information for an alternate user.

It will fill the user variables with information from the specified user record as well as
redirect user statements and functions.

ie:

GETALTUSER userRecordNumber

If an attempt is made to get a record number that doesn't exist, the user functions
will revert to the current user and the user variables will be invalidated as though no
GetUser/GetAltUser statement had been issued (though they will continue to maintain
any value held). PutUser/PutAltUser should be issued to commit any variable changes
to the user record. Additionally, there is at least one statement that will not affect
alternate users: AdjTime. It is restricted to the current user online. Also, if the
alternate user is online, changes to the record won't take hold until after the user has
logged off. Also, if there is not enough memory available (primarily for the last
message read pointers) this statement will fail.

See also : PutAltUser

CURUSER() :INTEGER
|

Determine what users information, if any, is available via the user variables. It takes
no arguments and returns one of the following values:

NO_USER (-1) - User variables are currently undefined

CUR_USER (0) - User variables are for the current user

Other - The record number of an alternate user for whom user

variables are defined

Comﬁilation Directives

;$INCLUDE:

Source files can be included from other source files. This is accomplished with a
compiler directive in a comment like this:

;SINCLUDE:FILESPEC.EXT

Note that the first character need not be the semi-colon. An apostrophe ['] or asterisk
[*] may also be used where appropriate.
This allows you to include subroutines from a source code ‘library’. This should help in
starting reusable code fragments. When the file is included, it is compiled as though it
were in the main source file. For example:

FOO.INC

:subroutine

PRINTLN "Hello!"

RETURN

FOO.PPS

PRINTLN "Running FOO.PPS"
GOSUB subroutine

END ' This line is important!
*$INCLUDE:FOO.INC

Note the use of END in FOO.PPS. It is important in this case to ensure that you don't
accidentally run subroutine twice by just falling through to it.

i

;SUSEFUNCS
Allow you to specifiy that you want to use user-defined functions and procedures.
This makes the code more flexible by allowing you to put your main code (code
between Begin and End) anywhere in your program (usefull if you have to incude
some user-defined functions with an include directive at the beginning of your code)

@Xnn Color Codes

PCBoard defines some macros to change color if user has ANSI capabilities.

If user doesn't support ANSI, PCB just skip those codes. It is a good way to colorize
your screens and prompt because you don't have to check the ANSI flag, PCB deal
with it automatically.

Color codes are made of 4 bytes. the first byte is used to enter in macro mode. The
second indicates that we want to pass a color code. Next byte is the background color
and the last is the foreground color.

BackGround codes :

O - Black

1 - Blue

2 - Green

3 - Cyan

4 - Red

5 - Magenta
6 - Brown

7 - LightGray
8 - Black

9 - Blinking foreground on Blue background

A - Blinking foreground on Green background

B - Blinking foreground on Cyan background

C - Blinking foreground on Red background

D - Blinking foreground on Magenta background
E - Blinking foreground on Brown background

F - Blinking foreground on LightGray background

Foreground codes :

O - Black

1 - Blue

2 - Green

3 - Cyan

4 - Red

5 - Magenta

6 - Brown

7 - LightGray
8 - DarkGray
9 - LightBlue
A - LightGreen
B - LightCyan
C - LightRed
D - LightMagenta
E - Yellow

F - White

GO ...
I

See : Go Sub Go To

... TO
I
See : Go To For...To...Next

PROCEDURE
L]

[DECLARE] PROCEDURE proc([TYPE varl [VAR] 1,...)

The keyword PROCEDURE is used in conjonction with the keyword DECLARE in the
declaration of a user-defined procedure...

The optionnal VAR keyword tells PPL to copy the contents of the local variable back
into the original variable when the procedure is finished processing.

The compiler directive ";$USEFUNCS" may be used in order to allow your main code
(code between BEGIN & END) to be located anywhere within your file...
Example :
NN
;SUSEFUNCS
DECLARE PROCEDURE procl(INTEGER i, STRING str, VAR INTEGER j)
INTEGER intl,int2
STRING sl
BEGIN
intl =1
int2 =2
sl = "HELLO"
procl(intl,sl,int2)
PRINTLN "intl =",intl
PRINTLN "int2 =",int2
PRINTLN "s1 =",s1
END
PROCEDURE procl(INTEGER i,STRING str, VAR INTEGER j)
PRINTLN "I'm in procl”

LET i = 30
LET j = 15
ENDPROC

See also : Function
FUNCTION
[]
[DECLARE] FUNCTION func(TYPE varl, ...) TYPE

The keyword PROCEDURE is used in conjonction with the keyword FUNCTION in the
declaration of a user-defined function...

The compiler directive ";3USEFUNCS" may be used in order to allow your main code
(code between BEGIN & END) to be located anywhere within your file...

The big difference between functions and procedures is that functions return a value.
To assign the return value inside a function, simple use the name of the function just
like a variable. You do not need to declare this variable, it is done for you. When the
function is finished executing the value in the return variable will be made available
as the return value.

Note that function calls can take place anywhere inside of an expression as well as
stand-alone statements. This can be useful in situations when the functions return
value is not needed, but the functions side effects are.

Example :

i

;PUSEFUNCS

DECLARE FUNCTION Xto_theY(INTEGER x, INTEGER y) INTEGER

DECLARE FUNCTION square(INTEGER x) INTEGER

FUNCTION Xto_theY(INTEGER X, INTEGER y) INTEGER

INTEGER i
Xto_theY = x
fori=2toy

Xto_theY = Xto_theY * x
next i

NN

ENDFUNC

FUNCTION square(INTEGER x) INTEGER
square = X * X

ENDFUNC

BEGIN

PRINTLN "4 to the 3rd power = ", Xto_theY(4,3)
PRINTLN "4 squared = ",square(4)

END

See also : Procedure

DECLARE

[]

See : Function Procedure
SELECT CASE
]

SELECT CASE var
CASE constl [, const2..const3 [, expr]]

DEFAULT (or CASE ELSE)
END SELECT
The SELECT CASE construct allows you to organize multiple execution paths into a
clean, easy to read format.
Each CASE contains one or more expressions delimited by commas. Each CASE
expression is compared to the SELECT CASE expression logically. If it is TRUE the
body of the CASE is executed. The CASE body can contain as many statements as
needed, including function calls. Note that ranges include the boundry values. eg
11..35 includes 11 and 35.
The DEFAULT case will be executed when none of the other CASE expressions
evaluate to TRUE. For BASIC programmers, the CASE ELSE is also valid instead of
DEFAULT.

Example :
INTEGER i
LETi=3
SELECT CASE (i)
CASE 1
PRINTLN "i = 1"
procl(i)
CASE 2,6,10
PRINTLN "i is 2,6 or 10"
proc2(i)
CASE 3
PRINTLN "i is 3"
CASE 11..35
PRINTLN "i is between 11 and 35"
CASE 50..60,64,78

PRINTLN "I is between 50 and 60 or 64 or 78
DEFAULT

PRINTLN "i is not a valid value"
END SELECT

DBASE |11l FUNCTIONS & STATEMENTS
PPL provide a load of functions & statements to access DBase Il files...

STATEMENTS

DCREATE channel,name,exclusive,fieldinfo ; create DBF file
DOPEN channel,name,exclusive ; open DBF file
DCLOSEchannel ; close DBF file

DSETALIAS channel,name ; set DBF alias

DPACK channel ; pack DBF file

DLOCK channel ; lock DBF file

DLOCKFchannel ; lock DBF file (same as DLOCK)
DLOCKRchannel,recno; lock a record
DLOCKGchannel,recnos,count ; lock a group of records
DUNLOCK channel ; unlock any current locks
DNCREATE channel,name,expression; create NDX file
DNOPENchannel,name ; open NDX file

DNCLOSE channel,name ; close NDX file

DNCLOSEALL channel ; close all NDX files

DNEW channel ; start a new record

DADD channel ; add the new record

DAPPEND channel ; append a blank record

DTOP channel ; go to top record

DGO channel,recno; go to specific record

DBOTTOM channel ; go to bottom record

DSKIP channel,number ; skip +/- a number of records
DBLANKchannel ; blank the record

DDELETE channel ; delete the record

DRECALL channel ; recall the record

DTAG channel,name ; select a tag

DSEEK channel,expression; string or double

DFBLANK channel,name ; blank a named field

DGET channel,name,var ; get a value from a named field
DPUT channel,name,expression; put a value to a named field
DFCOPYchannel,name,channel,name ; copy a field to a field
DCLOSEALL; close all DBF files

FUNCTIONS

N

DRECCOUNT (channel) (INTEGER) ; return the number of records
DRECNO (channel) (INTEGER) ; return the current record number
DBOF (channel) (BOOLEAN) ; return the begin of file status

DEOF (channel) (BOOLEAN) ; return the end of file status
DDELETED (channel) (BOOLEAN) ; return the deleted flag
DCHANGED (channel) (BOOLEAN) ; return the changed flag
DFIELDS (channel) (INTEGER) ; return count of fields

DNAME(channel,number) (STRING) ; return name of numbered field
DTYPE(channel,name) (STRING) ; return type of named field

DLENGTH (channel,name) (INTEGER) ; return length of named field
DDECIMALS (channel,name) (INTEGER) ; return decimals of named field
DSELECT (alias)(INTEGER) ; returns channel assiciated with alias
DSEEK(channel,expression) (INTEGER) ; returns error status (O|1)

; or seek success (0 = Error

; 1 = success, 2 = following record

; 3 = end of file)

DGETALIAS (channel) (STRING) ; return the current alias

DCLOSEALL (BOOLEAN) error status ; close all DBF files
DOPEN(channel,name,exclusive)(BOOLEAN) error ; open DBF file

DCLOSE (channel) (BOOLEAN) error status ; close DBF file

DSETALIAS (channel,name) (BOOLEAN) error status ; set DBF alias
DPACK(channel) (BOOLEAN) error status ; pack DBF file

DLOCK(channel) (BOOLEAN) error status ; lock DBF file

DLOCKR (channel,recno) (BOOLEAN) error status ; lock a record
DUNLOCK (channel) (BOOLEAN) error status ; unlock any current locks
DNOPEN (channel,name) (BOOLEAN) error status ; open NDX file
DNCLOSE (channel,name) (BOOLEAN) error status ; close NDX file
DNCLOSEALL(channel) (BOOLEAN) error status ; close all NDX files
DNEW (channel) (BOOLEAN) error status ; start a new record

DADD (channel) (BOOLEAN) error status ; add the new record

DAPPEND (channel) (BOOLEAN) error status ; append a blank record
DTOP (channel) (BOOLEAN) error status ; go to top record

DGO (channel,recno) (BOOLEAN) error status ; go to specific record
DBOTTOM (channel) (BOOLEAN) error status ; go to bottom record
DSKIP(channel,number) (BOOLEAN) error status ; skip +/- a number of records
DBLANK (channel) (BOOLEAN) error status ; blank the record

DDELETE (channel) (BOOLEAN) error status ; delete the record
DRECALL (channel) (BOOLEAN) error status ; recall the record

DTAG (channel,name) (BOOLEAN) error status ; select a tag

DFBLANK (channel,name) (BOOLEAN) error status ; blank a named field
DGET (channel,name) (STRING) ; get a value from a named field

DPUT (channel,name,expression)(BOOLEAN) error ; put a value to a named field
DFCOPY (channel,name,channel,name)(BOOLEAN) error; copy a field to a field
DERR (channel) (BOOLEAN) ; return error flag for channel

DERRMSG (errcode) (STRING) ; returns last DBase error text.

CAUTION: DBase functions that return the error status actually return 'ERROR. This is
to provide a consistent way to express an error in an expression. For example:

if (DERR (...)) println "Error!" ;DERR returns 1 or TRUE on an error.
if (IDSEEK(...)) println "Seek failed!" ;DSEEK returns O or FALSE on an error.

NOTE: Where file names are used, file extensions are optional. Any extension you
provide will be ignored. DBF and IDX are the default.
channel : Any value between O and 7
name: Char string
exclusive: Integer (TRUE || FALSE)
fieldinfo: Character string with the following fields
1- Field name

2- Field Type

C = Character

N = Numeric

F = Floating Point

D = Date
L = Logical
M = Memo

3- Field Length
4- Decimal (number of digits to the right of the decimal)

EXAMPLE:

string finfo(3)

let finfo(0) = "First,C,20,0"
let finfo(1) = "Last,C,20,0"
let finfo(2) = "Phone,C,15,0"

NOTE: multiple fields require an array of strings. 1 string for each field.
expression : Character String with search criteria on a field.

EXAMPLE:

string expr

let expr = "First"
recno,recnos,number,count : integers

DRIVESPACE : :

Usage: DRIVESPACE(drivespec) Return Val: Amount of divespace left of drive
drivespec.
Example:

integer left

left = DRIVESPACE("c:\")

println "There are ",tostring(left),"” bytes on drive C."
drivespec must include at least a drive letter AND a colon. Backslash is optional. With
directory specs it will work also. valid drivespecs are C: C:\ C:\PCB These will all
return drivespace left on dirve
*NOTE On LANTASTIC this will return drivespace of the current physical drive even if
it is mapped as a directory. OO

See also : FileInf Delete

SETLMR
I

SETLMR conf#,msg#
Set the last read pointers for the specified conference.

Example :
Integer conf,msg
if(newuser == TRUE) then ; If new user

while(conf < HICONFNUM()) DO; set all LMR's to
join conf ; HI_MSG - 10
SETLMR conf,HIMSGNUM()-10
INC conf
Endwhile
endif

If conf# is greater than the number of actual confrences conf# will default to the
highest conference number If msg# is greater than the highest message number in
that conference, it will default to the highest message number in that conference.
This could be used to set a new users mesg pointers to recent messages so they
aren't replying to 3 years old messages. A useful feature would be to get the high
conference number.

See also : HiConfNum HiMsgNum ActMsgNum LoMsgNum

SETENV

I
SETENV env_var
Set an environment variable
Example:

string s

let s = "stan=Stan"
SETENV s

if (GETENV("stan™) = "Stan") then
Printin "Environment variable stan = Stan "
Endif

Used to set DOS environment variable. This can be used for PPE's to communicate
with other PPE's. The environment variables set within PPL will NOT be available to
DOORs. Environment variables set within PPL will be cleared the next time PCBoard
recycles through DOS.

See also : GetEnv, Shell, Call

FCLOSEALL
]

Closes all file channels
Example:

fopen 1, "Autoexec.bat"
fopen 2, "Config.sys"

fcloseall
See also : FOpen FClose FCreate FAppend FRewind FNext

FNEXT()
]

Returns an availble file channel. -1 when none are available.

Example: 8100

println "The next available file channel is ",FNEXT()

FNEXT was created in order to better support code libraries made possible by
functions and procedures. File channel numbers can now be determined at runtime.
CAUTION: Until you actually OPEN a file FNEXT will return the same value over and
over.

chanl = FNEXT() chan2 = FNEXT() WRONG! chanl will equal chan2

another gotcha: FOPEN FNEXT(),blah blah

There is no way to determine what channel was used to open the file!
Here's an example of how it should be used:
chanl = FNEXT() FOPEN chani,...
chan2 = FNEXT() FOPEN chan2,...
See also : FOpen FClose FCreate FAppend FRewind FCloseAll

HICONFNUM(Q)
|

Returns the highest conference number available on the board

Example: HOOO

integer i

println "The highest conference available is ",HICONFNUM()

If a conference is installed it will be counted, even if it is not being used.
See also : SetLmr HiMsgNum ActMsgNum LoMsgNum

OUTBYTES()
|

Returns the number of bytes waiting in the modems output buffer Not available in
local mode.
Example:
integer i
println "Bytes waiting in the modem output buffer ", OUTBYTES()
See also : InBytes MGetByte SendModem MPrint MPrintLn MdmFlush

INBYTESQ)
|

Returns number of bytes waiting in the modem input buffer Not available in local
mode.
Example:
integer i
Println "Bytes in modem input buffer = ",INBYTES()
See also : OutBytes MGetByte SendModem MPrint MPrintLn MdmFlush

PCBMAC()
|

Returns a BIGSTR containing the expanded text of a PCB MACRO
Example:

integer i,j, res

j = PCBMAC("@Timelimit@")

I = PCBMAC("@Timeused@")

res = j-i

println "You have ",res, " Minutes left"

PCB MACROS not supported:

@automore@ @beep@ @clreol@ @cls@ @delay@ @more@ @pause@ @poff@
@pon@ @pos@

@goff@ @qon@ @wait@ @who@ @x@

CRC32()
]
UNSIGNEDTYPE = CRC32(CRC_FILE,"C:\AUTOEXEC,BAT")

CRC32(CRC_STR,"Stan is super cool™)
Returns an UNSIGNED value of the CRC of a file or string.

Example:

Printin "CRC on the file AUTOEXEC.BAT is", CRC32(CRC_FILE,"C:\AUTOEXEC.BAT")
The constants CRC_FILE and CRC_STR are the same as TRUE and FALSE. They were
added to make it easier to see if a file or string was being processed.

ACTMSGNUM()
|

Returns number of active messages in current conference

Example:

integer i

println "There are ", ACTMSGNUM()," messages in conference ",CURCONF()
See also : Join HiConfNum LoMsgNum HiMsgNum

STACKLEFT()
]

Returns the number of bytes left on the *system™ stack.
Example:

println "There are ",STACKLEFT()," bytes left on the stack"

;recursive call support

function stan(integer i,string str)

if(stackleft() > STK_LIMIT) stan(i,"Debra'™)

endfunc
This function was added to support nested and recursive function calls. Since function
calls take a lot of stack space. As of now only about 26 nested or recursive calls can
eat up the stack. This lets the programmer know when he/she is running out of stack
space as to avoid a runtime error. Both recursion and nested function calls should
check this value if more than just a few calls are to be executed. "L

See also : StackErr StackAbort

STACKERR()
|

Returns a boolean value which indicates a stack error has occured if TRUE.
Example:

if (STACKERR()) then
println "An error has occured "
end

endif
Because of the limited stack space for recursive function calls this function was
created. It allows the programmer to determine if a stack error has occured while
executing a PPE. This is in addition to the error message when the error occurs. The
only way this will be useful is if the PPL programmer has told PPL not to abort on
stack errors. PPL will *not* allow system memory to be corrupted when stack space
has been exausted. It will disallow any more function calls when there is no system
stack space left. *Note nested/recursive procedure calls are limited by heap space,
not stack space.

See also : StackLeft StackAbort

STACKABORT
I

STACKABORT TRUE | FALSE
Example:
STACKABORT TRUE ;Default is TRUE

This allows the programmer to tell the runtime module to try its best to continue
executing after a stack error has occurred. If it is passed FALSE, it will abort
execution after a stack error. If it is passed TRUE the PPE will continue to run. «[1[]
CAUTION! If you continue to execute after a stack error, program execution will be
unpredictable. PPL will not allow system memory to be corrupted because of a stack
error.

See also : StackLeft StackErr

DNEXT()
]

Returns an available dbase file channel. -1 when none are available.
Example:
println "The next available dbase file channel is ",DNEXT()

DNEXT was created in order to better support code libraries made possible by
functions and procedures. File channel numbers can now be determined at runtime.
CAUTION! Until you actually OPEN a file DNEXT will return the same value over and
over.
chanl = DNEXT() chan2 = DNEXT() WRONG! chanl will equal chan2
another gotcha: FOPEN DNEXT(),...
There is no way to determine what channel was used to open the file!
Here's an example of how it should be used:
chanl = DNEXT() FOPEN chani,...
chan2 = DNEXT() FOPEN chan2,...
See also : DBase functions

TODDATE (DATE date)

Converts any PPL type to DDATE type.
Example:
DATE di1
DDATE d2
d2 = TODDATE(d1)
This is an explicit type conversion. Implicit type conversion is also valid as with all
other PPL types.
See also : Date DDate data type MkDate

FREALTUSER
L

Since only one GETALTUSER can be active at one time, FREALTUSER can allow other
processes which need to use GETALTUSER (such as the MESSAGE commend) to do
So.
Example:
string name
GETALTUSER 20
name = U_NAME()
FREALTUSER
message 1,name,...
See also : GetAltUser GetUser PutAltUser PutUser

ACCOUNTING
L

Several functions and statements have been added to support PCBoard accounting
features. Also, many system constants have been added to make using these funtions
and statements easier for the PPL programmer.

CONSTANTS

There are three new functions which return accounting information. Each function will
return a value based on a parameter passed to it. Several constants have been added
to make accessing these values easier. The following list details these consts and
what they are used for.

for use with PCBACCOUNT() only!

val const Associated value

NEWBALANCE Credits Given to a new user account

CHRG_CALL Credits charged for a call

CHRG_TIME Credits charged for time used (in minutes)

CHRG_PEAKTIME Credits charged for peak time used

CHRG_CHAT Credits charged for chat session

CHRG_MSGREAD Credits charged for reading a message
CHRG_MSGCAPCredits charged for capturing a message

CHRG_MSGWRITE Credits charged for writing a message
CHRG_MSGECHOED Credits charged for writing an echoed message
CHRG_MSGPRIVATE Credits charged for writing a private message
CHRG_DOWNFILE Credits charged for downloading a file
CHRG_DOWNBYTES Credits charged for downloading bytes

PAY_UPFILE Credits given for uploading a file

PAY_UPBYTESCredits given for uploading bytes

WARN_LEVEL Credit threshold for low credit warning

crREBoow~v~ourwnro

The following are for use with PCBACCSTAT() only!

val constantAssociated value

0 ACC_STAT Returns status of the "Enable Accounting”
switch in the PWRD file. O=Accounting

disabled (N), 1=Tracking (T), and

2=Enabled (Y).

1 ACC_TIME The amount of ADDITIONAL units to charge
per minute while in the current

conference.

2 ACC_MSGR The amount to charge in ADDITION for each
message read in the current conference.

3 ACC_MSGW The amount to charge in ADDITION for each
message entered in the current conference.

The following are for use with ACCOUNT(), ACCOUNT and RECORDUSAGE only!

val constant description example

O START_BAL Users starting balance.

1 START_SESSION Users starting balance for this session
2 DEB_CALL Debit for this call

3 DEB_TIME Debit for time on

DEB_MSGREADDebit for reading message
DEB_MSGCAP Debit for capturing a message
DEB_MSGWRITE Debit for writing a message
DEB_MSGECHOED Debit for echoed message
DEB_MSGPRIVATE Debit for writing private message
DEB_DOWNFILE Debit for downloading a file
DEB_DOWNBYTES Debit for downloading bytes
11 DEB_CHAT Debit for chat

12 DEB_TPU Debit for TPU

13 DEB_SPECIALDebit special

14 CRED_UPFILECredit for uploading a file

15 CRED_UPBYTES Credit for uploading bytes

16 CRED_SPECIAL Credit special

17 SEC_DROP Security level to drop to at O credits

=
SO~ A

This group of constants can be used to access or modify user account information
using the ACCOUNT() function, ACCOUNT statement and/or RECORDUSAGE. The
ACCOUNT() function returns the current value and the ACCOUNT statement is used to
modify a value. Record usage also modifies a value with more information stored in a
usage file.

See also : Account RecordUsage

ACCOUNT(INTEGER field)
ACCOUNT INTEGER field, INTEGER value

1) the ACCOUNT() function

Returns amount of credits charged for services corresponding to the field parameter.
Example:

println "You have been charged ",ACCOUNT(DEB_CHAT)," for chat"

field is the field number to access (1-14) or using DEB__ constants
See the Accounting section for a list of constants witch can be used with the
ACCOUNT() function.
The account function is used to retrieve account information from PCBoard. These are
the constants which can be used with the ACCOUNT() function.
2) The ACCOUNT Statement
field is a value between 0-14. Using system constants is reccomended. value is the
amount of credits to add or subtract to field the field
Example:

ACCOUNT DEB_CHAT,10
The ACCOUNT statement is used to modify accounting information for a user. This
statement will simply modify a debit value whereas the RECORDUSAGE will do the
same thing as well as record information in the accounting file.
The valid constants for this statement are the same as those used for the ACCOUNT()
Function. See the Accounting section for a list of those consts

See also : Accounting RecordUsage

U
RECORDUSAGE ...

Usage : RECORDUSAGE INTEGER field,STRING descl,STRING desc2,DWORD
unitcost,INTEGER value
Example:

RECORDUSAGE DEB_CHAT,"Debit for chat”, "Using PPE",10,10
field is the field number to access (using DEB_... consts) descrl is the descripttion of
the charge descr2 is a subdescription of the charge unitcost is the cost per unit value
is the number of units
Recordusage will update debit values in PCBoard as well as record descriptions and
other information in an accounting file.
Valid values for the field parameter are 2-16. The constants corresponding with these
values (DEB_??7?) could and should be used here. (see the Accounting section for a
list of consts)

See also : Accounting Account PCBAccount PcbAccStat

PCBACCOUNT(INTEGER field)
.

Returns what PCBoard will charge a user for a certain activity. These are values the
SysOp assigns in PCBsetup when accounting is configures and enabled.

Example: COOLO

println "You will be charged ",PCBACCOUNT(CHRG_CHAT)," for chat"

Valid values for the field paramter are 0-14. Use of the corresponding constants is
encouraged. (see the Accounting section)
See also : Accounting Account RecordUsage PcbAccStat

PCBACCSTAT(INTEGER field)

Returns value in status field

Example:

PRINTLN "Mutiplier for credits is ",PCBACCSTAT(ACC_STAT)

This function can and should be used in conjunction with the ACC_??? constants as

the field parameter. Valid values for field are 0-3. (see the Accounting section)
See also : Accounting Account RecordUsage RecordUsage

MESSAGE HEADER FIELD ACCESS CONSTANTS
- ___|

Field Value hex dec Field Description
HDR_ACTIVE OxOE 14Message active flag field
HDR_BLOCKS 0x04 4Number of 128 byte blocks in message
HDR_DATE O0x05 5Date message was written
HDR_ECHO OxOF 15Echoed message flag
HDR_FROM Ox0B 11Who the message is from
HDR_MSGNUM O0Ox02 2Message number
HDR_MSGREF 0x03 3Reference message
HDR_PWDOx0OD 13Message password
HDR_REPLY OxO0A 10OMessage reply flag
HDR_RPLYDATEOx08 8Reply message date
HDR_RPLYTIMEOX09 9Reply message time
HDR_STATUS 0Ox01 1Message status
HDR_SUBJ Ox0C 12Message subject

HDR_TIME O0x06 6Message time
HDR_TO Ox07 7Who the message is to.

These constants are for use with SCANMSGHDR(conf_num,start_msg,field,text) in the
FIELD parameter.
See also : ScanMsgHdr

SCAN MSGHDRSconf,start_msg Jfield ,test:

Returns the first message number in the message base which matches the search
criteria.
Example:

integer msgno

msgno = SCANMSGHDR(0,1,HDR_TO,"Stan")
This function can be used to scan PCBoard message bases for certain information. All
fields in the standard header can be searched. There are 15 fields in the standard
header. Valid values for field are 1-15. See the list of constants related to this
function.

See also : MsgToFile Message Header Constats

MSGTOFILE conf,msg no,filename

Writes a message into a file.
Example:

;Using SCANMSGHDR to search for a message

MSGTOFILE 0,200,"d:\msg1l.txt"

DISPFILE "D:\msgl.txt",DEFS
This statement will take the given message and write it to a text file. The file's first 15
lines will contain standard header information. (One field per line) The headers are
formatted to make parsing easier. The 16th line will state how many extended
headers are present. The following line(s) will contain extended headers. (one per
line) Finally, after the extended headers, will be a line containing "Message body:".
Everything after that is the body of the message. 3010

See also : ScanMsgHdr, DispFile, HDR_... Consts

QWKLIMITS field,limit

QWKLIMITS(field)

1) The QWKLIMITS Statement

This statement allows the PPL programmer to modify a users QWK limits. Four fields
can be modified with their statement.

Important note. You *must* use GET USER AND PUTUSER with these QWK functions.

Example:

GETUSER

QWKLIMITS MAXMSGS,500
PUTUSER

- Max Messages: Maximum messages allowed in a gwk packet
Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Max Messages per Conference: Maximum messages allowed in a gwk packet per
conference.

Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Personal Attach Limit: Maximum number of bytes in attached files for the user.

- Public Attach Limit: Maximum number of bytes in attached files for the user.

Four constants have been defined to identify the FIELD value.
Constant ValueField

MAXMSGS 0O Max messages per gwk packet

CMAXMSGS 1 Max Messages per conference
ATTACH_LIM_U 2 Personal attach bytes limit
ATTACH_LIM_P 3 Public attach bytes limit

2) The QWKLIMITS() function

This functions returns the values contained in the users QWK configuration. The same
constants used in the QWKLIMITS statements can be used with the field parameter.
Example:

GETUSER

PRINTLN QWKLIMITS(MAXMSGS)

MESSAGE HEADER FIELD ACCESS CONSTANTS

Field Value hex dec Field Description

HDR_ACTIVE OxOE 14Message active flag field

HDR_BLOCKS 0x04 4Number of 128 byte blocks in message
HDR_DATE Ox05 5Date message was written

HDR_ECHO OxOF 15Echoed message flag

HDR_FROM O0Ox0B 11Who the message is from
HDR_MSGNUM O0x02 2Message number

HDR_MSGREF 0x03 3Reference message
HDR_PWDOx0OD 13Message password
HDR_REPLY OxOA 10Message reply flag
HDR_RPLYDATEOxO8 8Reply message date
HDR_RPLYTIMEOx09 9Reply message time
HDR_STATUS 0Ox01 1Message status
HDR_SUBJ Ox0C 12Message subject
HDR_TIME O0x06 6Message time
HDR_TO Ox07 7Who the message is to.

These constants are for use with SCANMSGHDR(conf_num,start_msg,field,text) in the
FIELD parameter.

SCANMSGHDR(conf,start msg,field,test)

Returns the first message number in the message base which matches the search
criteria.
odd
Example:
integer msgno msgno = SCANMSGHDR(0,1,HDR_TO,"Stan™)
This function can be used to scan PCBoard message bases for certain information. All
fields in the standard header can be searched. There are 15 fields in the standard
header. Valid values for field are 1-15. See the list of constants related to this
function.

See also : MsgToFile

MSGTOFILE conf,msg no,filename
|

Writes a message into a file.
Example:
;Using SCANMSGHDR to search for a message MSGTOFILE 0,200,"d:\msgl.txt"
DISPFILE "D:\msgl.txt",DEFS
This statement will take the given message and write it to a text file. The file's first
15 lines will contain standard header information. (One field per line) The headers
are formatted to make parsing easier. The 16th line will state how many extended
headers are present. The following line(s) will contain extended headers. (one per
line) Finally, after the extended headers, will be a line containing "Message body:".
Everything after that is the body of the message.

See also : ScanMsgHdr, DispFile, HDR_... Consts

QWKLIMITS field,limit

QWKLIMITS:fieId :

1) The QWKLIMITS Statement

This statement allows the PPL programmer to modify a users QWK limits. Four fields
can be modified with their statement.

Important note. You *must* use GET USER AND PUTUSER with these QWK functions.

Example:
GETUSER QWKLIMITS MAXMSGS,500 PUTUSER

- Max Messages: Maximum messages allowed in a gwk packet

* Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Max Messages per Conference: Maximum messages allowed in a gwk packet per
conference.

* Note: If you specify a number higher than that contained in PCBSETUP the values in
PCBSETUP will be used.

- Personal Attach Limit: Maximum number of bytes in attached files for the user.
- Public Attach Limit: Maximum number of bytes in attached files for the user.

Four constants have been defined to identify the FIELD value.
Constant ValueField

MAXMSGS O Max messages per gwk packet

CMAXMSGS 1 Max Messages per conference
ATTACH_LIM_U 2 Personal attach bytes limit
ATTACH_LIM_P 3 Public attach bytes limit

2) The QWKLIMITS() function

This functions returns the values contained in the users QWK configuration. The same
constants used in the QWKLIMITS statements can be used with the field parameter.
Example: GETUSER PRINTLN QWKLIMITS(MAXMSGS)

